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Abstract

This paper deploys a framed field experiment and uses high frequency data to eval-
uate the short- and long-run effects of three behavioral interventions on residential
water use during extreme drought. Our study of the effects of Home Water Reports
(HWRs) on hourly water use yields three main results. First, even when layered on
top of a 25% drought conservation mandate, HWRs led to conservation effects of 4 to
5%. Second, across all three treatments the profile of water conservation is similar,
suggesting that households did not respond to the messaging or recommendations con-
tained in the HWRs. Third, the water conservation effect of all interventions dissipated
five months after the intervention ended. In our setting, these behavioral interventions
aligned with utility incentives to achieve immediate but temporary water conservation

in response to drought.
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1 Introduction

The growth in the application of behavioral interventions has been tremendous. Govern-
ments and policymakers across the world use default settings, social norms comparisons,
commitment devices and salience signals to encourage retirement savings, college enroll-
ment, vaccinations, and participation in job-training programs (Benartzi et al., 2017). An
expansive literature has evaluated the impacts of these nudges on behavior and in particular
the use of social norms comparisons as a tool to influence choice (Allcott, 2011; Beshears
et al., 2015; Croson and Shang, 2008; Duflo and Saez, 2003; Frey and Meier, 2013; Gerber
and Rogers, 2009). While these studies demonstrate that social norms comparisons alter

behavior, the mechanisms underlying the response to these nudges remain elusive.

This paper deploys a randomized controlled trial and uses high-frequency data to explore
some potential channels through which agents may respond to social norms comparisons. We
lean on the experimental design and ask what features of a popular behavioral intervention
induce a response? In practice, social norms comparisons typically comprise a bundle of
treatments, and experiments are rarely designed to map each treatment to a behavioral
effect. The behavioral intervention that we study shares this first commonality - it consists
of social norms comparisons, informational messaging and personalized recommendations -
but by design our experiment directly tests which of these components induces a response.
Second, we combine granular data on water use with detailed information on longer-run
decisions to empirically examine the margins by which agents respond to nudges, and the
persistence of these effects. Often, data limitations make it challenging to understand how
agents respond to treatment. The availability of high-frequency data spanning eighteen
months post-treatment and rich supplemental data on participation in rebate programs allow

us to overcome some of these hurdles.

We study these questions in the economically interesting and policy-relevant context of
residential water use during the longest-recorded drought (2011 to 2016) in California history.
The first distinguishing feature of our experiment is its timing. Our study took place during
the last full year of the drought when a state-wide policy mandating a 25% reduction in
urban water use, as well as many other conservation policies, were already in place (Board,
2015; Browne et al., 2021). The timing of our intervention provides a unique opportunity to
test if social norms can induce conservation when layered on top of a suite of existing water
conservation policies. A second distinct feature of our setting, and one that generalizes

to most urban water utilities, pertains to how urban water is priced. Most urban water



districts bundle some fixed costs into volumetric rates (Mitchell et al., 2017). When urban
conservation is required, this pricing structure can lead to substantial revenue shortfalls and
regulators may respond by raising rates. This was the case in California during this period,
when revenue decreased for more than 70% of urban water suppliers (Mitchell et al., 2017).
An implication of this pricing structure is that when conservation is mandated, the utility
incentive is for temporary rather than permanent reductions in water use. The time span of
our data allows us to examine if nudges provide a conservation instrument that aligns with

utility incentives for immediate, but temporary, water conservation in response to drought.

This paper uses a large-scale field experiment that provided popular home water re-
ports (HWR) aimed at urban water conservation to a random sample of households. A
distinguishing feature of our experimental design is that we randomly varied the content
of HWRs to test what features of the report elicit a conservation response. All treatment
households received bi-monthly HWRs that compared their own water use to similar and
efficient households, offered personalized water conservation recommendations, and shared
information about utility-sponsored programs. Some treatment households were randomly
assigned to receive personalized recommendations aimed at indoor water conservation. Given
that the only difference across the two treatments is the content of the recommendations,
a comparison across them allows us to test if households respond to the recommendations
contained within these reports. A third treatment arm provided households with an incen-
tive, in the form of a durable good, and informed them of it via the messaging component of
the HWR. This treatment offers an opportunity to directly examine if households respond
to the messaging portion of HWRs.

We find that the profile and level of water conservation are similar across all three treat-
ments. The provision of HWRs reduced average hourly water use by 4% to 5%. Within- and
across-day treatment effects highlight that while there is substantial heterogeneity in when
water conservation occurs, conservation patterns are similar across all three treatments. In
our setting, neither tailored water recommendations targeting indoor water use nor messag-
ing advertising a durable good incentive had a differential effect on water conservation. This
finding adds to recent experimental work that seeks to understand the channels through
which home water and energy reports impact customer behavior. To date, the focus has
been on the social norms comparison, and how the framing of this comparison in absolute,
relative or ordinal metrics or when paired with an injunctive norm affects choices (Allcott,
2011; Byrne et al., 2018; Bhanot, 2017; Brent et al., 2015, 2020). Less is known about

the messaging or recommendation components of the report, which may function to reduce



cognitive limitations when making choices about water and energy consumption (Wichman,
2017; Brent and Ward, 2019; Attari, 2014; Allcott and Taubinsky, 2015; Jessoe and Rapson,
2014; Carlsson et al., 2019). Similar to Dolan and Metcalfe (2015), we find little evidence
that customers respond to these features of the reports. Our finding suggests that households

may be responding to the receipt of or the social comparisons component of HWRs.

The magnitude of our estimated treatment effect adds a critical data point to questions
about the external validity of behavioral interventions in the context of residential water
conservation. Residential households in our setting faced mandatory outdoor watering re-
strictions, social pressure to conserve water, and a state-wide 25% conservation mandate.
These policies translated into large reductions in water use, with control households reducing
water use by 26% year-on-year.! HWRs were layered on top of these utility-wide conserva-
tion policies, and it was unclear ex-ante if any remaining conservation levers existed. Despite
the starkly different context, our short-run average treatment effects lie within the range of
conservation effects reported from other recent studies of HWRs in California (Brent et al.,
2015; Mitchell et al., 2017). For policymakers, this finding suggests that social norms com-
parisons can be integrated into the drought management toolkit and deployed in conjunction

with other conservation instruments (Ferraro and Price, 2013; Brandon et al., 2019).

Another central finding of our study is the absence of a persistent response.The water
conservation effect of each intervention is not statistically detectable five months after the
end of the experiment. During the treatment period, households likely respond to HWRs
through a reduction in indoor water use and outdoor irrigation, and increased compliance
with watering restrictions. These conservation behaviors remain for the first four post-
treatment months, but decay quickly thereafter. Indoor and outdoor watering behaviors of
treatment households mirror those of control households five months after the intervention
ended. One reason for this short-lived response may be that, in our setting, households did
not respond to treatment through investment in water-efficient capital. Data on the uptake
of rebates for water-efficient durables support this hypothesis. We find that HWRs have
no impact on participation in water rebate programs. While our results point to potential
limitations of HWRs as a long-run water conservation policy, the temporary reduction in

water use aligns with the pricing model of many utilities.

The short-lived conservation effect detected in our setting is an exception to the persistent

impacts typically documented in the residential water and energy space (Allcott and Rogers,

IThis water use reduction occurred in many other utilities across the state. Over 43% of utilities met the
state-wide conservation mandate. The exact policies leading to this reduction are utility specific (Browne
et al., 2021).



2014; Brandon et al., 2017). In the water sector, social norms messaging has led to conser-
vation effects enduring more than two years post-treatment and increased participation in
water conservation and rebate programs (Bernedo et al., 2014; Ferraro et al., 2011; Brent
et al., 2015). One likely reason for the divergence between our finding and others reported
in California is the context in which we study HWRs, specifically, the presence of a historic
drought.? Households may have responded to the drought or drought-related programs via
the uptake of water-efficient durables and rebates, rendering this margin of response unavail-
able. More broadly, our finding that treatment does not lead to investment in water-efficient
durables or lasting habit formation suggests that the geography and time period matter when
evaluating the lifespan of treatment effects, and hence the cost-effectiveness of behavioral

interventions.

The paper begins by discussing the experimental research design and data. It then
compares treatment effects across the three interventions. The paper then evaluates dynamic
treatment effects of treatment, leveraging the high-frequency nature of our data to explore the

potential margins by which households respond to treatment. Lastly, the paper concludes.

2 Social Norms and Resource Use

Empirical evidence on the effect of social norms comparisons on resource conservation took
root in the behavioral psychology literature through the example of towel use among hotel
guests. In one hallmark study, Goldstein et al. (2008), randomly placed cards with either a
pro-social environmental message or a social norms message in hotel rooms and compared
towel reuse in these hotel rooms to reuse in the control group. The authors finding that 44%
of guests assigned to the social norms treatment reused towels, perhaps provided inspiration
for the widespread dissemination of social norms comparisons throughout water and energy
utilities in the U.S.

In the residential water and energy settings, these comparisons primarily occur through
the vehicles of Home Energy Reports (HERs) and Home Water Reports, and seek to induce
energy and water conservation. From a methodological perspective, what is noteworthy
about their deployment is that the companies providing these products typically use ran-
domized controlled trials. This provides a credible research design to evaluate the effect of

HWRs and HERs on residential water and energy consumption, respectively.

2Bernedo et al. (2014); Ferraro et al. (2011) document long-term conservation effects of a one-time
social-norms comparison that was deployed during a drought in the Atlanta, GA area.
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The coupling of this research design with utility-specific variation in the content of re-
ports has given rise to a wealth of studies that seek to understand why, for whom, and under
what conditions these interventions elicit a response. In the residential energy space, HERs
deployed by the company OPower have been shown to induce on average a 1% to 2% con-
servation effect. However, this average treatment effect masks heterogeneity in the response.
Treatment effects vary by baseline electricity use (Allcott, 2011; Byrne et al., 2018), across
print and digital reports (Dolan and Metcalfe, 2015), informedness on own electricity use
(Byrne et al., 2018), and political ideology (Costa and Kahn, 2013). Dynamics and site
selection also influence the magnitude of the response. Backsliding occurs between reports;
conservation effects persist once the (e)mailing of reports end, slowly decaying over time;
and bias in the sites selected for the deployment of HERs likely overstate treatment effects
when HERs are used in other utilities (Allcott and Rogers, 2014; Allcott, 2015). More recent
experimental work finds limited evidence of crowd-out effects from the provision of multiple
energy nudges, and a differential response when financial incentives are provided in HERs
(Brandon et al., 2019; List et al., 2017).

Table 1 shows that researchers have applied the same rigor to the question of social norms
messaging and residential water use. The table provides an overview of field experiments
since Ferraro et al. (2011) that evaluate the effect of social norms on residential water use.
We briefly summarize the empirical setting, sample size, intervention studied, and treatment
effects for each study.® Collectively, this body of work highlights that social norms messages,
on average, induce residential water conservation effects of 3 to 5 percent. These effects have
been documented in locations throughout the U.S., during both drought and non-drought
conditions, and in response to monthly, bi-monthly, and one-time comparisons (Ferraro et al.,
2011; Bernedo et al., 2014; Ferraro and Price, 2013; Goette et al., 2019; Bhanot, 2017, 2018;
Brent et al., 2015, 2020).

Experimental studies in the residential water setting have sought to understand the fea-
tures of the HWRs that induce a conservation effect and the margins by which households
respond to these interventions in the short- and long-run. Our paper adds to this literature
along three dimensions. A first body of work asks what component - messaging, recommen-
dations, social comparisons - of HERs and HWRs elicit a conservation effect. Most of this

literature has zoomed in on the social comparisons piece, and shown that the framing of

3The list does not include all studies on non-price conservation instruments in the residential water
space. Importantly, it excludes non-price interventions that do not contain a social norms component (e.g.
Wichman (2017); Tiefenbeck et al. (2018)), non-experimental studies (e.g. Browne et al. (2021)), and the
majority of studies that occurred outside of the U.S. (e.g. Torres and Carlsson (2018)).



the comparison in relative versus absolute metrics, as an ordinal ranking, and as an injunc-
tive norm influences water and energy use (Bhanot, 2017, 2018; Brent et al., 2020; Allcott,
2011). Less well-studied are the two other features of the HWRs - recommendations and
messaging - on water use. Our experimental design provides an opportunity to isolate the
effect of these treatments on water use. It is most similar to Dolan and Metcalfe (2015),
who compare how energy statements with social norms affect energy consumption, relative
to energy statements comprised of both social norms and information on energy use. Their
study affords the opportunity to isolate the effect of social norms comparisons and the in-
cremental effect of information, while ours provides an opportunity to test the incremental

effect of two stalwart features of HWRs - water saving recommendations and messaging.

The conservation effects of these interventions typically persist, with studies citing habit
formation and capital investments as the responsible mechanisms. In the residential electric-
ity setting, Allcott and Rogers (2014) show that the energy conservation from HERs decay
but remain detectable once treatment ends, and attribute this to habit formation. Brandon
et al. (2017) revisit this question using data from dozens of experiments and find that in-
vestment in energy-efficient capital partly explains the persistence of the treatment effect.
In the residential water setting, (Ferraro et al., 2011; Ferraro and Price, 2013; Bernedo et al.,
2014) show that a one-time social norms message leads to conservation effects detectable
more than three years post-treatment. Brent et al. (2015) offer up capital investments as
one explanation for this persistence, showing that HWRs increased participation in water
conservation programs by 8%. High-frequency data on water use offer a new opportunity to
understand the margins by which households respond to HWRs in the short- and long-run.
We evaluate the effect of HWRs on the daily profile of water consumption and the response
to day-of-week outdoor watering restrictions. If HWRs, for example, induce households to
reprogram outdoor irrigation, then this will be detectable with high-frequency data, and will
suggest that habit formation partly explains the response to treatment. Our study offers a
complement to existing work that use more temporally aggregated data to understand the
long-run effects of HWRs.

A third contributing feature of our study is the setting in which HWRs were deployed.
Previous work has shown that in the context of California, HWRs that compare own water
use to that of others lead to conservation effects of 3% to 5% (Brent et al., 2015; Bhanot, 2017,
2018). A shared feature of these studies is that they occur during non-drought periods. In
contrast, the timing of our experiment coincides with the most severe drought in California’s

history. Mandatory outdoor watering restrictions were in place; the state had imposed a 25%



urban conservation mandate; utility-sponsored conservation programs had been deployed;
and there was strong social pressure to reduce water use. Perhaps as a result, control
households had engaged in year-on-year water reductions of 26%. For these reasons, it was
uncertain if the water savings found in earlier studies could be reproduced in our setting.*
Our study speaks to the external validity of earlier findings on the water savings from HWRs,
and to whether this intervention acts as a substitute to coincident conservation programs
(Brandon et al., 2019).

Our study shares the same experimental framework as a recent companion paper by
Jessoe et al. (2021), but is distinct in the questions asked, outcomes studied, and treat-
ments of interest. In Jessoe et al. (2021), the authors focus exclusively on one treatment
arm, “WaterSmart Only”, to evaluate the short-run effects of social norms on electricity
use. The current study focuses on a separate set of questions, and uses different data and
treatment arms to answer them. First, by design, our experiment seeks to understand what
components on the HWR induce a response. Specifically, we randomly vary the content
of the recommendations and the strength of the messages to test if households respond to
the recommendations and messaging features of the HWR. Second, this paper evaluates the
margins by which households respond to HWRs in the long-run. Third, we ask what is
the effect of HWRs on water use during an extreme drought, and when layered on top of

mandated watering restrictions.

3 Experimental Design and Data

We deployed a framed field experiment in a service territory with high-frequency water data
to evaluate the effect of water conservation instruments on short-run and long-run water use.
We implemented the experiment in partnership with WaterSmart and Burbank Water and
Power, a municipally-owned utility serving roughly 18,500 single-family homes in the City
of Burbank. The experiment spanned March 2015 to May 2016 and included the summer
marked by the worst drought in California’s history. While treatment ended in May 2016,
we continued to collect hourly interval data through December 2017, more than eighteen

months post-treatment.

4Ferraro et al. (2011) and Brent et al. (2020) show that social-norms comparisons can reduce water
use during drought in Georgia and Nevada, respectively. However, the authors used different, utility-based
messaging.



3.1 Research Design

Our sample consists of 16,900 single-family homes that had billing records for at least six
months preceding treatment. We randomly assigned households to the control group or one
of three treatments: ‘WaterSmart Only,” ‘Hot WaterSmart,” or ‘Hot WaterSmart Plus.” We
describe each treatment below. The 2,967 households assigned to the control group received

no notification that they were in a pilot program.

All treatment households received six bi-monthly HWRs between May 2015 and April
2016.° In March 2015, before the arrival of the first report, all treatment households received
an introductory letter that explained what HWRs were and when they would be delivered.
Both the initial letter and households’ first HWR were sent by mail. All subsequent HWRs
were sent by mail to households that received their utility bill via mail and by email to those

that paid their utility bill online.

In the year preceding the experiment, power calculations were performed using monthly
water use data for all eligible households. We assumed that the sample size would consist of
13,200 households, each treatment account would receive five HWRs, and an equal number
of households would be assigned to each group. We calculated a minimum detectable effect
(MDE) of 1.4%, with 80% power and 5% size for each treatment arm. This implies that our
experiment will not be able to statistically distinguish across small differences, less than 1.4%,
in the response to the three treatments. It also motivated the provision of a strong durable
goods incentive. Power calculations were also performed for a joint treatment indicator in
which all three treatment arms were collapsed into a single treatment arm. We calculate a
1.1% MDE, which is smaller than the treatment effects estimated by Ferraro et al. (2011)
two years post-treatment (Table 1).

WaterSmart Only: The 4,470 accounts randomly assigned to the WaterSmart treat-
ment received HWRs comprised of personalized conservation recommendations, information
on utility-sponsored conservation programs and water use, and social comparisons. Figure
A.2 provides an example of a report - the social comparison appears on the top left, utility
announcements on the top right, and personalized water-saving actions on the bottom of
the report. The former compares own water use in the previous billing cycle to water use

of similar and efficient households, and contains an injunctive norm comprised of a smiling,

5Appendix A and Figure A.1 provide a detailed timeline on the deployment of HWRs. They also include
information on coincident utility conservation programs, data availability, and the timing of the mailer.



indifferent, or frowning water drop. Water recommendations include projected water sav-
ings and the value of those water savings calculated using utility water rates. The impact of
similar HWRs and Home Energy Reports (HERs) on water and electricity use, respectively,
has been the focus of several studies (Brent et al., 2015; Ayres et al., 2013; Allcott, 2011;
Schultz et al., 2007).

Hot WaterSmart (HWS): We assigned 4,709 households to a ‘Hot WaterSmart’ treat-
ment to test if recommendations aimed at hot water use could reduce indoor water use. The
treatment is the same as the WaterSmart treatment, with two exceptions. First, half of
the personalized water-savings recommendations focus on actions that could reduce indoor
water use. Second, in addition to quantifying the expected water savings, all recommenda-
tions quantified expected natural gas savings and the cumulative dollar value attributable
to these savings. Figure A.3 provides an example of a ‘Hot” HWR. In this HWR two of the
three water-saving recommendations are tailored towards indoor water use (i.e. reduce water
heater temperature and fill bathtub three-quarters of the way).® Since the only distinction
across this treatment and the ‘Water Smart Only’ treatment is the recommendations con-
tained in the report, our experiment is designed to examine if households respond to the

recommendation component of HWRs.

Hot WaterSmart Plus (HWS+): The 4,701 households randomly assigned to this
treatment had a durable goods incentive layered on top of the Hot WaterSmart treatment.
This incentive took the form of a water and natural gas conservation contest. A household
would win a water- or energy-efficient durable if (i) it enrolled in the contest and (ii) pre-
determined conservation targets were met.” To increase program enrollment, we sought to
minimize enrollment costs and offer a prize of meaningful value. Enrollment only required
visiting the contest website to enter a name and email address, and to agree to the terms of
conditions. Conditional on enrollment, all households that met the targets were guaranteed
a prize. The twenty-five households with the greatest water use reductions would win a
high-efficiency clothes washer ($850 retail value). The next one hundred enrolled households
would win low-flow shower heads ($30 retail value). All remaining households would win an

energy efficiency kit ($10 retail value).

SFigure A.4 shows all hot water saving recommendations used over the treatment year.

"We set two conservation targets: a 27% year-on-year reduction in water use and a 3% year-on-year
reduction in natural gas use. The water conservation target corresponded to the conservation mandate
imposed by the state of California on BWP. The natural gas conservation target was set based on discussions
with our natural gas partner.



Importantly, contest information, the enrollment procedure, and progress towards meet-
ing the conservation targets were conveyed exclusively through messages in the HWRs.
Households were informed of this contest in the messages of three HWRs - the program
was introduced to households in the third HWR (Figure A.5), and households were provided
with individualized progress updates in their fourth and sixth HWRs (Figure A.6). Given
that the distinguishing feature across this treatment and Hot WaterSmart is the content
of the messages, we can directly test if households respond to the messaging component of
HWRs.

3.2 Mapping the Experimental Design to Behavior

A theoretical literature has shown and continues to explore the circumstances under which
cognitive limitations such as self-control problems or inattention may introduce errors into
the consumer decision-making process (Thaler, 2018; Allcott and Kessler, 2019). Nudges,
defined broadly as interventions that seek to alter behavior without changing prices or choice
sets, have been proposed as a tool to address classic market failures and behavioral biases
(Loewenstein and Chater, 2017). Home Water Reports describe one nudge. They aim to
induce water conservation by comparing own water use to that of peers, providing recommen-
dations on ways to reduce water use, and through the actual receipt of the report. Adhering
to the taxonomy defined in Carlsson et al. (2019), these reports may function as both a

cognitive and moral nudge.

The social norms component of HWRs, in which own water use is compared to water use
among peers, comprises a textbook moral nudge. Assume that some consumers derive moral
(dis)utility from water consumption. As in Levitt and List (2007), one can conceptualize
this as a moral tax on water. The possibility of a moral tax is particularly likely in our
setting since our study coincided with the most severe drought in California’s history, and
strong social pressure from local and state governments to reduce water use. HWRs may
increase or decrease this tax depending on how one compares to peers (Allcott, 2011; Byrne
et al., 2018; Ferraro and Price, 2013). If HWRs induce conservation by increasing the moral
tax on water, then they operate as a moral nudge. Our experiment is not designed to isolate

the impact of the moral nudge component of the HWR, on behavior.

Cognitive nudges seek to reduce or leverage cognitive limitations to induce a socially

desirable response. Water savings recommendations contained in HWRs may reduce the
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difficulty in converting water-consuming actions into water use and expenditures (Kahneman,
2003; Brent and Ward, 2019; Attari, 2014; Allcott and Taubinsky, 2015). They may also
provide new information on the financial savings from water conservation. Our experimental
design directly tests if recommendations alter decisions, and in doing so, explicitly examines
one cognitive channel through which HWRs may impact consumer behavior. If the margins
by which customers respond to HWRs differ based on the recommendations received, then
this provides empirical support that HWRs partly operate as a cognitive nudge. However,
the failure to detect an effect does not rule out HWRs as a cognitive nudge. Receipt of these
reports may draw attention to water conservation and, therefore, reduce households’ water

use.

The messaging component of HWRs may operate as a cognitive or moral nudge depending
on the message a utility chooses to display. However, messages will only influence customer
behavior if customers are attentive to them. The contest arm of our experiment seeks to
make messages more salient by using them as the exclusive vehicle to display and advertise a
durable goods incentive. If households assigned to this treatment disproportionately reduce
water use, they may be responding to the durable goods incentive or because messages have
become more salient (Myers and Souza, 2020; List et al., 2017). The absence of a differential
effect implies that customers may overlook this component of the HWR, disregard it because
the incentive is too low or of little value, or perhaps respond to HWRs for intrinsic reasons
(Brent and Wichman, 2020).

3.3 Data

Hourly water consumption data serve as our primary outcome of interest. BWP provided
water use data for all single-family homes in its service territory between April 1, 2014,
a year before the intervention, and December 31, 2017, over a year and a half after the
experiment ended. We supplement these data with information on customer participation in
BWP’s rebate programs, assessor data on housing characteristics, and hourly temperature

and precipitation data from a nearby weather monitor.

Table 2 compares baseline characteristics across control and treatment households. The

table highlights that, before the intervention, treatment and control households are balanced
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in seasonal water use, rebate applications and household characteristics.® As is typical in
California, water use exhibits large seasonal fluctuations, with use peaking in the dry and
warm summer months when outdoor irrigation is most prevalent. Hourly water use measures
at 11.5 and 19.5 gals/hour in the winter and summer months, respectively. Water use is
balanced in all 2015 pre-treatment months. To provide additional evidence on the quality
of the randomization, we plot out the distribution of average daily water use across control
and treatment households. Figure 1 which illustrates these distributions, makes clear that

the distribution of daily water use is balanced across treatment and control.

Detailed data on the uptake of utility-sponsored water-efficient rebates provides an oppor-
tunity to test the hypothesis that treatment households respond to WaterSmart by increasing
investment in water efficient durables. The utility provided information on the rebate type,
rebate amount and rebate date for all utility sponsored water efficiency programs between
January 1, 2014 and June 30, 2016. As shown in Table 2, participation in existing water
rebate programs is relatively low, with only 3% of households applying for a rebate between
January 1, 2014 and June 30, 2016. The value of the rebate is also low, with the mean rebate

value amounting to $2.

4 A Comparison Across Interventions

To isolate the impact of each treatment on water use and test for differential effects across
the three treatments, we compare average hourly water use across control and treatment

households during the twelve-month treatment period. We estimate the following regression:

Yiht = Z BiTij 4+ Xipy + O + O + €ine (1)

j
The dependent variable y;,; is household i’s water use in hour h of calendar date t. The
regressors of interest are 7}, which equal one if a household is assigned to treatment j €
{WS, HWS, HWS+}, and zero otherwise. In some specifications, we augment equation (1)
to improve the precision of our estimator, conditioning on pre-treatment seasonal water use

and weather data (X/,,), as well as hour-of-day (d;,) and calendar date fixed effects (9;).

8We use the historical water use data to construct three seasonal average water use statistics that are
used as controls in some regression specifications. We define two broad seasonal classifications, summer
defined as April to October, and winter defined as November to March. These seasonal classifications are
also used to construct other variables. These seasonal designations align with BWP’s seasonal outdoor
watering restrictions.
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Our first set of results, reported in Table 2, makes clear that all three HWRs led to a
reduction in water use. Asshown in columns (1-2), hourly water use reduced by -0.49 to -0.60
gallons, or 3.8% to 4.8% over the treatment year.® The remainder of this table separately
highlights treatment effects in the first six months of the treatment period (columns 3 and
4) and the last six months of the treatment period (columns 5 and 6). The level reductions
in water use are similar when we break out the results by the first and second half of the

intervention, despite baseline use changing substantially across seasons.'?

While the magnitude of our reported treatment effects mirrors those reported in other
studies, the setting is unique. WaterSmart has deployed HWRs throughout utilities in
California, and recent work has evaluated the effect of these reports on water use. Under
normal precipitation conditions, HWRs induce average water savings of 4% to 5% (Bhanot,
2018; Mitchell et al., 2017; Brent et al., 2015). The unanswered question is how would
perform during droughts. We show that HWRs continue to deliver savings of 2.8 to 3.7%
during extreme drought, even when layered on top of other conservation instruments. While
we cannot weigh in on whether this result would have occurred in the locations that are
the focus of Bhanot (2018); Mitchell et al. (2017); Brent et al. (2015), our finding highlights
that in our setting other conservation instruments such as outdoor watering restrictions or

a conservation mandate do not crowd out the savings from HWRs.!

More generally, it
suggests that behavioral approaches may not operate as a substitute to other conservation
instruments during times of water scarcity. The absence of a crowding out effect echos the
finding of Ferraro and Price (2013) and Brent et al. (2020), who also find that social norms
comparisons deliver water conservation on top of outdoor watering restrictions and during

times of drought.

We find no differential impact of the three treatments on water use despite differences in
the content of the HWRs. A comparison of the WaterSmart and HotWaterSmart treatment
effects highlights that modifying recommendations to include natural gas conservation and

the accompanying financial savings led to no changes in average hourly water use. The

9Comparing results across columns 1 and 2 highlights the stability of our results to the inclusion of
controls, suggesting that the addition of these covariates serves to increase the precision of our estimates.

10Testing the impact of multiple treatments on multiple outcomes leads to natural concerns that standard
errors are incorrect due to a failure to account for multiple hypothesis testing. Appendix C presents adjusted
p-values that account for multiple-hypothesis testing across several dimensions. P-values naturally increase
with these adjustments, though all primary results remain statistically significant.

1We cannot quantify the water conservation that would have occurred if the deployment of HWRs
preceded the drought. The ideal experiment would have staggered the introduction of HWRs, randomly
assigning HWRs to one treatment group before the drought and to another treatment group during the
drought.
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addition of recommendations aimed at hot water conservation also did not alter water use
patterns across days of the week and hours of the day (Appendix B.2). This finding aligns
most closely with Dolan and Metcalfe (2015), who find no differential response to social norms
comparisons in the presence and absence of information. One caveat in our comparison
of treatment arms is that we cannot rule out the possibility that small (less than 1.4%)

differences exist across treatment groups.

Similarly, altering the content of messages in HWRs to showcase and advertise a durable
goods incentive for water conservation induced no change in average hourly water use or
water usage patterns. One reason why households may not have responded to the incentive
program is that it was conveyed exclusively through messages in HWRs, and households
may have been inattentive to these messages. Only 68, or 1.4%, of customers enrolled in the
“Conserve and Win” program, despite 253 households achieving the water and natural gas
targets necessary to receive a durable good prize. Low enrollment rates, including for those
who met the contest requirements, suggest that households may simply have overlooked the

messaging portion of HWRs.

Collectively, our experimental results provide evidence that households do not respond to
the messaging or recommendations components of the HWRs. These results are consistent
with a framework in which the receipt of or the social norms component of the report alters
behavior. Our findings align with experimental work that demonstrates the framing of social
norms messages in absolute, relative, and ordinal metrics, and its pairing with an injunctive
norm impact consumption (Brent et al., 2020; Allcott, 2011; Byrne et al., 2018; Bhanot,
2017). Given the similar response across treatment groups, moving forward, we combine all
three treatments into a single treatment that we refer to as “WaterSmart,” and focus on the
short- and long-run impacts of treatment as well as the mechanisms underlying the response

to treatment.

5 Dynamic Effects

Hourly water data spanning twenty months post-treatment allow us to identify impacts of
HWRs on water use patterns and, indirectly, households’ behaviors. We first investigate
the short- and long-run average treatment effects of HWRs. This allows us to evaluate
persistence in response to treatment. We then take advantage of our hourly water use

data to study patterns in treatment effects across hours of the day and days of the week.
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We leverage utility-designated watering restrictions and seasonal patterns in water use to
understand the margins along which households respond to treatment. In particular, we
explore treatment effect heterogeneity along these two dimensions to indirectly test whether
treatment affected both indoor and outdoor water use behaviors. Last, we explore the extent

to which households respond to HWRs by investing in water-efficient capital.

5.1 Short and Long-Run Effects

We first compare hourly water use across control and treatment households in calendar-
months before, during, and after treatment to identify the duration of treatment effects. We

estimate,
Yint = Zﬁr(l[tr = 7] x Ti) + Xipyy + 0n + ¢ + €ine- (2)

As before, the dependent variable y;;,; is household i’s hourly water use (gals/hour) in hour
h of calendar date t. T} is an indicator for our joint treatment effect, and the indicators
1[t, = 7] equal one if date ¢ is in month 7. We also condition on the covariates previously
described. We include data from March 2015, two months before the intervention, through

December 2017, twenty months after the intervention ended.

The coefficients of interest, 3, measure the effect of assignment to treatment on hourly
water use in calendar month 7, relative to control households. Figure 3 plots the coefficient
estimates and the corresponding 95% confidence intervals. The shaded area A corresponds
to the treatment year. We classify the four months post-treatment as the ‘backslide’ period,
and label this as shaded area B. The third area, denoted by C and which we refer to as the

‘convergence’ period, corresponds to post-treatment months five to twenty.

The figure illustrates that, while HWRs led to a near-uniform reduction in water use
levels during the treatment months, the conservation effect quickly decays. In the twelve
months during which households received HWRs, water use reduced by 0.5 to 0.6 gals/hour.1?
However, the treatment effect is short-lived. We continue to observe conservation effects of
0.5 to 0.6 gals/hour in the first two post-treatment months, but these effects decay by roughly

a third by the third post-treatment month. Five months after treatment ends, there is no

12Fjgure B.5 replicates Figure 3 using the log of water use as the dependent variable. Percentage reductions
are largest in winter months when average water use is lower.
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statistically discernible difference in water use across control and treatment households.!?
The convergence in water use between treatment and control households remains through

the end of our sample.

Our finding that HWRs have short-lived impacts contrasts some previous experimental
work. In the residential water setting, the conservation effects of a similar one-time inter-
vention remained detectable six years after treatment (Bernedo et al., 2014). The impacts
of HERs on residential energy use decayed but persisted five to ten years post-treatment
(Allcott and Rogers, 2014; Brandon et al., 2017). One explanation for the lack of persistence
in our setting is differences in the research design. In our experiment, treatment stopped at
roughly the same time for all households. This set-up allows us to detect treatment effects in
each post-treatment month relative to control households. In contrast, Allcott and Rogers
(2014) randomize when one block of households in each treatment site stopped receiving
HERs. This allows them to also quantify treatment effects in each post-treatment month

relative to households that continue to receive reports.

Differences in the empirical setting, as opposed to differences in the research design, may
also explain the absence of long-run effects. In the residential water setting, experimental
studies have detected persistent effects by comparing treatment to control households in the
post-treatment period (Bernedo et al., 2014; Ferraro et al., 2011). While we replicate this
approach, we find that treatment effects do not endure beyond five months. A standout
feature of our experiment is that it coincided with extreme drought, and it ended just as
many of the drought restrictions were removed. During our treatment period, a statewide
25% mandatory conservation mandate was in place, outdoor watering restrictions increased
in stringency, and water-efficient rebate programs had been deployed. These policies all
relaxed following the winter of 2016. By June 2016, the regulator removed the statewide
conservation mandate and BWP increased the number of allowable outdoor watering days.
Looking at Figure 2 we see that water use is higher beginning in June 2016 relative to the
corresponding month in the previous year, when stringent drought measures were in place.
Given that our treatment period aligned with a period of extreme conservation measures,
and our post-treatment period coincided with the removal of many of these measures, the

absence of a persistent effect may be partly attributable to the end of a historic drought.

BOur experiment is powered to detect treatment effects of up to 1.1%, so we cannot definitively rule
out the possibility of smaller long-run treatment effects. Our minimum detectable effects are smaller than
the effects estimated in Ferraro et al. (2011), which evaluate treatment effects in the two years following
treatment.
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5.2 Hour-of-Day Treatment Effects

We take advantage of the temporal granularity in our data to better understand the absence
of a persistent effect in our setting. We begin by evaluating the impact of assignment to
treatment on the within-day water use profile. We also take advantage of seasonal differences
in water use to indirectly examine how indoor- versus outdoor-water use behaviors respond
to treatment. We do this for each of the three periods in Figure 3 — treatment, backslide,

and re-convergence — to examine how these patterns of behavior change over time.

We estimate a fixed effects model where we interact assignment-to-treatment with indi-

cator variables for each hour-of-day:

yine = Y By (L[h = 1]  Ta) + Xy + 0 + ine. (3)
1

The regression mirrors equation (1) except that assignment-to-treatment is interacted with
a vector of indicators 1[h = 7] that equal one when hour-of day h equals . We estimate
equation (3) for five distinct sub-samples: (i) summer treatment months, (ii) winter treat-
ment months, (iii) the ‘backslide’ months; (iv) summer ‘convergence’ months; and (v) winter
‘convergence’ months. Recall that the treatment months refer to when households received
bi-monthly HWRs; the ‘blackslide’ period defines the first four months post-treatment span-
ning May 2016 to August 2016; and the ‘convergence’ period characterizes post-treatment
months 5 to 20. We estimate separate specifications for summer and winter months to

understand household behavior during months when demand for outdoor watering is high.

We first focus on the effects of HWRs on water use during summer and winter treatment
months (Panels Al and A2 of Figure 4).1% The figure suggests that treatment impacted
both outdoor and indoor water use. During most summer treatment months, households
were only allowed to water outdoors on Tuesdays and Saturdays after 6 PM and before 9
AM (Figure A.1). During winters months, households were only allowed to water outdoors
on Saturdays during the same hours. In the summer months, households exhibit the largest
water use reductions during the early morning and evening hours when outdoor watering was
allowed. The largest reduction in winter water use also occurs during these hours, though
the early morning and evening treatment effects are much smaller relative to the summer

response. This may occur because demand for outdoor watering is lower in the winter, or

14 Tables with hour-of-day and day-of-week regression results are available in Appendix B. Appendix C
presents p-values that (partially) correct for multiple hypothesis testing.
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because outdoor watering was limited to only one day a week. The timing of the largest
summer and winter reductions in water use coincides with the hours when outdoor irrigation

is permitted, and suggests one margin of response is outdoor irrigation

The within day response to treatment suggests that households are also responding
to treatment by reducing indoor water use. We estimate treatment effects, around -0.4
gals/hour, from 10 AM to 6 PM when outdoor watering is prohibited. These treatment
effects are present in both summer and winter months. Conservation effects during these

hours suggest that households are also responding to treatment through indoor water use.

The remaining panels in Figure 4 plot treatment effects for the backslide and convergence
periods.’® Consider the backslide period (Panel B). Relative to the previous summer, the
treatment effects diminish, most notably in the early morning and evening hours. Standard
errors increase appreciably. However, the treatment effect profile remains similar to the one
observed in Panel Al, suggesting that household water conservation habits persisted, but
to a lesser extent, in the four months following treatment. Little evidence of a treatment
impact remains in the convergence period (Panels C1 and C2). Both the winter and summer
daytime treatment effects are precisely estimated and indistinguishable from zero, suggesting
that indoor water use is nearly identical across control and treatment households. During the
summer, some households still appear to conserve water in the early morning and evening
hours. However, the standard errors are large, and the point estimates are smaller than
those estimated during the treatment period, suggesting that the outdoor watering impacts
of HWRs do not persist. Collectively, these results suggest that while HWRs induced mean-
ingful changes in outdoor and indoor watering behaviors during the treatment period, these

effects are relatively short-lived.

5.3 Day of Week Treatment Effects

We estimate day of week treatment effects to indirectly test if households respond to HWRs
through the margins of outdoor water use and habit formation. In response to the historic
drought, BWP imposed utility-wide outdoor watering restrictions that designated the days
of the week and the hours on these days when outdoor irrigation was permitted. The de-
ployment of HWRs may have induced systematically different responses during time periods

with and without watering restrictions in place, both during the treatment period and in

15Note that all backslide months occurred over the summer of 2016.
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the post-treatment months. For example, if treatment households responded to HWRs by
re-programming their irrigation systems to run for fewer minutes on the hours and days when
irrigation was permitted (e.g., 6-7 AM on a Tuesday), we would observe a large treatment
effect on watering days during hours where outdoor watering was permitted. This would
provide indirect evidence that households respond to treatment via outdoor irrigation. Fur-
ther, if these settings remained in place after the last HWR was sent, we would continue to
observe the same treatment effect pattern in both the backslide and re-convergence periods.
This would provide indirect evidence in support of habit formation. To test for these mar-
gins of response, we estimate day-of-week effects both in the treatment and post-treatment
periods, and do so separately for hours when outdoor watering was permitted and prohibited

using the following regression:

Yint = Z 65 (1[t5 = (5] X TZ) + X;ht/y + 6h + (St + €nt- (4)
1)

We estimate equation (4) for four distinct periods. As with our hour-of-day results, we
estimate the equation for winter and summer treatment months because different watering
restrictions were in place in the summer (6 PM to 9 AM on Tuesday and Saturday) and
winter (6 PM to 9 AM on Saturday) treatment months. We then estimate the equation
for the backslide period, when the summer treatment irrigation rules were reinstated and
outdoor watering was allowed on Tuesday and Saturday between 6 PM and 9 AM. Last,
we estimate the equation for the entire post-convergence period, when outdoor watering
restrictions were relaxed and irrigation was permitted from 6 PM to 9 AM on Tuesday,

Thursday and Saturday.

Figure 5 presents our results, and plots the day of week treatment effect as well as
the corresponding 95% confidence interval. The shaded gray area designates days when
outdoor watering is permitted.'® Red diamonds display treatment effects during the hours
of the day when outdoor watering is permitted, and blue circles represent treatment effects

during hours when outdoor watering is banned.!'” Panels A1 and A2 present the summer

16 A comparison across plots highlights that watering restrictions changed throughout our study period.
BWP (mostly) allowed outdoor irrigation on Tuesdays and Thursdays in the summer of 2015 and on Sat-
urdays during winter 2015-2016. The utility returned to a Tuesday/Saturday schedule after the experiment
ended, and instituted a permanent Tuesday/Thursday/Saturday schedule in August 2016 that remained
in effect through the end of our sample. For brevity, we include results for the most prominent watering
regimes. We show results for all watering regimes in Appendix B.3.

"Even on days when outdoor watering is permitted, it is only allowed during certain hours of the day.
To account for this estimate we separate treatment effects for the hours spanning 6 PM to 9 AM, and the
hours spanning 9AM to 6PM.
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and winter treatment effects, respectively, panel B presents treatment effects during the

‘backslide’ period, and panel C depicts treatment effects in the re-convergence period.

Panel A1 illustrates that during the summer treatment period, the largest conservation
effects occur on irrigation days during hours when households are allowed to water their
lawns. Summertime treatment effects during these hours are about three times as large as
the average treatment effects reported in Table 3. Treatment effects during non-watering
hours on watering days (i.e. blue circle on gray shaded days) are similar to those estimated
during all hours on non-irrigation days. We see similar results during winter months (Panel
A2). Interestingly in the winter months, we still estimate a large treatment effect on Tues-
days during early morning and evening hours, though outdoor watering is prohibited. The
results suggest that treatment caused households to reduce lawn irrigation relative to con-
trol households and that these habits persisted through the treatment year. We also find a
stable reduction in water use on days and hours when households are not allowed to irrigate,

suggesting that outdoor water use behavior is not the only margin driving our ATE.

The remaining panels illustrate that the conservation patterns developed during treat-
ment persist into the first four post-treatment months, but erode in the convergence period.
As shown in Panel B, we continue to observe large treatment effects in the backslide period
during hours and days when outdoor watering is permitted. The response mirrors the re-
sults in Panel A1, though the estimates are slightly noisier. The results provide evidence of
short-lived habituation to treatment, both in the daily patterns of water conservation and
the magnitude of this conservation effect. These treatment effects are no longer present in
the convergence period. We observe minimal differences across control and treatment house-
holds for all days and all hours. These results demonstrate that in the short- to medium-run,
treatment households form indoor and outdoor water conservation habits, but that this suite

of conservation habits decays entirely five months after treatment ends.

5.4 Capital Investments

One reason for the temporary response may be that, in our setting, households did not
respond to treatment by investing in water-efficient capital. To examine this hypothesis, we
use rebate application data to test for the effect of assignment to treatment on households’
durable investments. BWP provided household-level information for all residential rebate
applications between July 2014 and June 2016. We focus on rebate applications for water-

efficient durables, including clothes washers, dishwashers, outdoor rain-water barrels, and
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turf replacement, and consider two outcomes. First, we create indicators for whether a
household applied for any rebate in a pre-treatment month (July 2014 to February 2015),
treatment month (March 2015 to May 2016), or post-treatment month (June 2016). Our
second measure aggregates the dollar value of all rebates received by households in each of
these three periods.

We estimate a simple difference-in-differences model, comparing rebate outcomes across

control and treatment households before and after treatment,
rp =T+ 6,(Ap=p)) + Y _ B, (Lp = p] x T3) + X}y + €3, (5)
p p

The dependent variable, 7;,, is either the indicator variable for whether household ¢ applied
for a water efficiency rebate in period p or the rebate amount ($) household i received in
period p. We include an indicator variable, T;, that denotes if a household was assigned
to the WaterSmart treatment, and indicator variables for the treatment and post-treatment
periods, p. Our regressors of interest are the treatment assignment by period interactions,
and our coefficients of interest 3,, measure the effect of WaterSmart in the treatment and
post-treatment periods on rebate participation relative to control households in the respective
periods.

Table 4 reports our results along with rebate participation summary statistics for control
households. Baseline program participation is low; less than 3% of control households applied
for any rebates in the treatment year. The dollars received are also low, with households
receiving just $5 on average. Most rebates are for appliances (clothes washers or dishwash-
ers).’® We find that HWRs had no detectable impact on rebate applications or the dollar
amount in rebates a household receives. The absence of an effect is notable given that HWRs
advertise rebate programs. The results provide another piece of supporting evidence that:
(i) households did not respond to the messaging or recommendation components of HWRs;

and (ii) assignment to treatment did not increase investment in hard capital.

6 Conclusion

This paper uses high-frequency data to evaluate the short and long-term effects of three

behavioral interventions on household water use during a historic drought. We focus on the

IBBWP offers generous rebates; the median rebate pays $70. The largest rebates over this period were for
outdoor lawn replacement. Appliance rebates range from $25 to $170, while turf rebates range from $440 to
$2,500.
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impacts of Home Water Reports, an oft-deployed behavioral nudge comprised of social norms
comparisons, messaging, and individualized conservation recommendations. We first use our
experimental design to isolate the extent to which customers respond to each component
of this bundled treatment. Neither the content of water recommendations or personalized
messaging advertising a durable goods incentive alters the response to HWRs, suggesting
that households respond either to the social comparisons portion of the treatment or the
receipt of the HWR.

With climate change, droughts are expected to become more frequent and more severe.
Given that our study coincides with the most extreme drought in California’s history, it
offers a preview into the potential of social norms comparisons to induce conservation under
future weather conditions. We deployed our study during a period when households had
already engaged in substantial conservation efforts. Year-on-year water reductions for control
households amounted to 26%, and a statewide conservation mandate of 25% was in place.
During peak drought conditions HWRs delivered average water savings of 2.8 to 3.5% on
top of existing conservation efforts, with households reducing both indoor and outdoor water
use. The magnitude of the estimated effects are similar to those reported under non-drought
conditions, and provide a new data point on the suitability of behavioral interventions as a

short-run drought conservation instrument.

These conservation effects of HWRs are short-lived and fully dissipate five months post-
treatment. We find that, during the treatment period, households change indoor and outdoor
water use patterns. These habits persist in the first four-months post treatment, but con-
sumption patterns across treatment and control households are identical five months post-
intervention. One reason for the temporary effect in our setting may be that shortly after
our treatment ended, the drought was declared over and conservation policies were removed

or relaxed.

The ability of HWRs to quickly elicit a 3% to 4% reduction in water use during times
of drought may align well with the pricing model used by many urban water utilities. The
rules governing the allocation of water in California at times require immediate and large
water conservation among urban users. This was the case in the summer of 2015. One
unintended consequence of the urban water conservation experienced during this drought
is that it led to reduced revenues for more than 70% of urban utilities. This is because of
how residential water is priced in California: most water utilities bundle some fixed costs

into volumetric rates. The degree to which costs exceeded revenues depended in part on the

22



magnitude and duration of water conservation. Many utilities responded to the end of the
drought by raising volumetric rates to cope with resulting revenue shortfalls. In our setting,
HWRs provide an immediate, but short-lived, reduction in water use that is compatible with

the incentive structure of utilities during droughts.
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Table 1: Experimental Evidence of Social Norms Comparisons

in Residential Water Use

Paper Intervention Relevant Estimate Setting

penedo ool (10| D7 SR vk
Bhanot (2017) %ygjfhl}_{yén":s 1% to +3.6%¢ 4,000 HEs, Casro Valley, GA
Bhanot (Forthcoming) Donthly, WS 2.9% to -3.1%" 5,000 HEG, Bay Arca, CA
Brent ct al. (2015) gi\;ngnthly, WS “4.9% to -7.7%: no effect 7,400 HHs; 3 CA utilities

Two-Time, Utility

4,300 HHs, Truckee, NV

Brent et al. (2020) sc -1.5%¢ 2015, Drought

Brent and Wichman (2020) gi\;\;n}gﬁh;)}:ic\gs -3.8%¢4 38&?20??57 Southern CA
Ferraro et al. (2011) &“‘ggii‘eﬁgmiw 2.5% (Yr 1), -1.25% (Yr 2)° ;ggﬁggg?&ﬁ;ﬁta’ aa
Ferarro and Price (2013) ges—giTeF;)SUtility -2.7% to -4.8%7 ;88,7();03r1311:1g5‘1;tAtlanta7 oA

Goette et al. (2019)

Bi-monthly, Researcher
PS +SC + F + $$

-2.2% to -2.6%9

1,000 HHs; Singapore
2016-2017

Kazukauskas et al. (2021)

Continuous; Private
SC + RTF

0%

525 HHs; Umea, Sweden;
2016

Notes: The table summarizes relevant comparison studies to our own. The second column describes the frequency and mode of the
intervention in the top row, and the type of the intervention in the second row. For the mode of intervention, we indicate the source of
messaging: ‘Private’ is a municipality-owned rental company, ‘Researcher’ indicates researcher-run experiment, ‘Utility’ indicates
a utility-designed, and ‘WS’ indicates WaterSmart designed intervention. For the type of intervention, ‘F’ indicates feedback,
‘HWR’ indicates a Home Water Report (often with an injunctive norm and information), ‘IN’ indicates an injunctive norm, ‘I’
indicates information, ‘PS’ indicates pro-social comparison, ‘Price’ indicates different pricing structures, ‘Rank’ indicates ranked-
peer comparisons, ‘RTF’ indicates real-time-feedback, ‘SC’ denotes the study used a social comparison, ‘$$’ indicates monetary
prize. The third column presents the primary and most relevant findings from the studies. Where possible, we convert estimated
treatment effects to percentage changes. The last column describes the study setting.

*Treatment effects are impacts of HWRs with two ranked comparison treatments relative to conventional HWRs.

bInjunctive norms included variations of HWRs with and without versions of the water droplet. HWRs with no drop induced the
smallest percentage decrease while HWRs with the injunctive drop caused the largest decrease.

“Treatments included two variants of social comparisons, which had very similar average impacts. The authors find strong normative
messaging likely leads to larger reductions.

dThe authors find HWRs are not more effective for customers with higher marginal prices and do not make customers more price
sensitive.

€The authors further explore the same experiment in previous studies, showing most impacts are driven by high water users and
the impacts wane over time.

fThe authors find a weak social norm had a smaller impact than a strong social norm that included a social comparison. Technical
information alone had no statistically significant impact on water use.

9Impacts consisted of leaflets left at households with different messaging on the back of the leaflet. The largest treatment effects
are for the post-like campaign, though there is little difference between each treatment.
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Table 2: Balance Tests and Summary Statistics

Control WS HWS HWS+
Baseline Water Use April '14 (gals/hour) 17.00 16.77 17.06 16.92
Difference -0.22 0.06 -0.08
p-value (0.38) (0.82) (0.75)
Baseline Water Use Summer 14 (gals/hour)  19.60 19.39 19.56 19.47
Difference -0.21 -0.04 -0.13
p-value (0.44) (0.89) (0.62)
Baseline Water Use Winter ’15 (gals/hour) 11.67 11.76 11.67 11.74
Difference 0.09 -0.00 0.07
p-value (0.64) (0.99) (0.72)
2015 Pre-treatment Water Use (gals/hr) 12.34 12.34 12.35 12.38
Difference -0.00 0.01 0.04
p-value (0.99) (0.97) (0.84)
Rebate (Indicator) 0.03 0.03 0.03 0.03
Difference 0.00 0.01 0.00
p-value (0.94) (0.10) (0.58)
Rebate ($) 1.99 1.96 2.64 2.28
Difference -0.03 0.65 0.29
p-value (0.93) (0.13) (0.43)
Year Built 1945 1945 1944 1944
Difference -0.06 -1.05 -0.61
p-value (0.86) (0.14) (0.40)
Square Feet 1630.42 1,634.24 1,634.09 1,643.19
Difference 3.82 3.67 12.77
p-value (0.82) (0.82) (0.44)
Bedrooms 2.91 2.90 2.92 2.92
Difference -0.01 0.01 0.01
p-value (0.64) (0.66) (0.53)
Bathrooms 1.93 1.93 1.95 1.94
Difference -0.00 0.01 0.01
p-value (0.98) (0.55) (0.57)
Pool(Indicator) 0.23 0.23 0.23 0.22
Difference -0.00 0.01 -0.01
p-value (0.78) (0.62) (0.36)

Notes: The table presents average characteristics for control versus treatment households for our three treatments.
WS, HWS, and HWS+ indicate the WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus treatment groups,
respectively. ‘Difference’ is the difference in means relative to the control group and ‘p-value’ is the p-value from
the relevant regression coefficient from running an OLS regression of the outcome on the three treatment indicator.
For water use, standard errors are clustered at the household. For all other outcomes, standard errors are robust to

residual heteroskedasticity.
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Table 3: Water Intent-to-Treat Effects (Dependent Variable: Water Use (gals/hour))

Full Sample
(5/15-4/16)

First Six Months
(5/15-10/15)

Last Six Months
(11/15-4/16)

(1) (2) (3) (4) (5) (6)
WaterSmart -0.539%%* -0.508%** -0.507FFF 0,446 FF  _0.582%**  _(0.569%**
(0.171) (0.101) (0.196) (0.116) (0.163) (0.112)
Hot WaterSmart -0.603*** -0.591+** -0.524%*%  _0.497FFF  0.701%**  -0.684%F*
(0.167) (0.097) (0.192) (0.113) (0.158) (0.108)
Hot WaterSmart Plus -0.508%** -0.485*** -0.461%*  -0.401%**  _0.571FFF  _0.56T***
(0.168) (0.097) (0.194) (0.114) (0.159) (0.106)
Hop: WS=HWS 0.65 0.34 0.92 0.59 0.39 0.24
Hy: WS=HWS+ 0.83 0.78 0.78 0.64 0.93 0.99
Mean Control Use 12.6 12.6 14.3 14.3 10.9 10.8
Observations 139,470,003 136,932,213 70,545,877 68,894,068 68,924,126 68,038,145
Weather Controls No Yes No Yes No Yes
Date, Month FEs No Yes No Yes No Yes
Pre-Treatment Use Controls No Yes No Yes No Yes

Notes: The table reports intent-to-treat estimates from an OLS regression of hourly water use on assign-

ment to WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus treatments. Columns 1 and 2 include

all observations from May 1, 2015 to April 30, 2016. Columns 3 and 4 restrict the sample to the first

half of the intervention, and columns 5 and 6 restrict the sample to the second half of the treatment

period. Hy: WS=HWS presents the p-value from a two-sided equivalency test between the WaterSmart

and Hot WaterSmart treatments, and similarly for Hy: WS=HWS+-. Standard errors are clustered at
the household. *, **, *** denote significance at the 10%, 5%, and 1%level.
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Table 4: Water-Related Rebate Applications

Panel A: Rebate Application Indicator Outcome

Any Rebate Appliance Rebate Turf Rebate
nm @ © (4) (5) (6)
WaterSmart -0.002  -0.002  -0.002 -0.002 0.000 0.000
(0.003) (0.003) (0.003) (0.003) (0.001)  (0.001)
WaterSmart X Post-Treatment 0.001 0.001 0.001 0.001 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.000)  (0.000)
Mean Control Participation (%)  0.028 0.029 0.025 0.026 0.0030  0.0031
Panel B: Rebate Amount Outcome
Any Rebate Appliance Rebate Turf Rebate
nm @ © (4) (5) (6)
WaterSmart 1.608 1.230 -0.008 0.024 1.616 1.206
(1.406) (1.477) (0.243) (0.250) (1.386)  (1.458)
WaterSmart X Post-Treatment -0.480  -0.491 0.067 0.082 -0.547 -0.572
(0.554)  (0.585) (0.092) (0.098) (0.547)  (0.577)
Mean Control Amount ($) 4.88 5.07 1.80 1.81 3.08 3.26
Observations 54,441 48,324 54,441 48,324 54,441 48,324
Pre-Treatment Controls No Yes No Yes No Yes

Notes: The table reports intent-to-treat results from an OLS regression of rebate application

indicators (Panel A) and rebate payment amounts (Panel B) on assignment to WaterSmart,

Hot WaterSmart, or Hot WaterSmart Plus over the treatment and post-treatment periods. The

period spans May 2015 through Jun 2016. Pre-Treatment Controls include baseline household

average water use for Winter 2014, Summer 2015, and Winter 2015. Standard errors are robust

to arbitrary heteroskedasticity. *, **, *** denote significance at the 10%, 5%, and 1%level.
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Figure 1: Pre-Treatment Water Use Balance
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Notes: Figure 1 kernel density functions of daily average, pre-treatment water use for the control and

treatment groups. The pre-treatment period includes April 2014 through February 2015. The distribution

is truncated at 2,000 gals/day.
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Figure 2: Average Water Use By Treatment
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Notes: Figure 2 graphs average hourly water use by month, broken up by control and treatment

households. The shaded area is the treatment period.
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Figure 3: Intent-to-Treat Effects over Time
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Notes: Figure 3 graphs monthly intent-to-treat effects and 95% confidence intervals over time for the joint
treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). The shaded area A

corresponds to the treatment period, area B corresponds to the ‘backslide’ period, and area C corresponds
to the ‘re-convergence’ period. All regressions include baseline household water use, local weather controls,

as well as date and hour-of-day fixed effects.
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Figure 4: Intent-to-Treat Effects by Hour-of-Day
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Notes: Figure 4 graphs intent-to-treat effects and 95% confidence intervals over each hour-of-day for the
joint treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). The top row
presents results during summer months (May to October) in red diamonds and the bottom row presents
results during winter months (November to April) in blue circles. A is the treatment period, B is the
‘backslide’ period, and C is the ‘re-convergence’ period. All regressions include baseline household water

use, local weather controls, as well as date and hour-of-day fixed effects.
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Figure 5: Intent-to-Treat Effects by Day-of-Week
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Notes: Figure 5 graphs intent-to-treat effects and 95% confidence intervals over each day-of-week for the
joint treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). Al is the first half of
the treatment period (June 2015 to October 2015), A2 is the second half of the treatment period
(November 2015 to March 2016), B is the ‘backslide’ period (May 2016 to August 2016), and C is the
‘re-convergence’ period (September 2016 to December 2017). Shaded bars indicate days when BWP
permitted outdoor watering. Blue circles and red diamonds denote treatment effects for non-watering and
watering hours, respectively. All regressions include baseline household water use, local weather controls,

as well as date and hour-of-day fixed effects.
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A Experiment Details

Timeline of the Intervention. Figure A.1 provides a timeline of our data coverage,
treatment, and outdoor watering restriction regimes. Our hourly water use coverage span
April 1, 2014, to December 31, 2017. We define the baseline water use period as April 1,
2014 to February 28, 2015. We use these data to construct three baseline measures of water
use: April 2014 (April 2014), Summer 2014 (May 2014 to October 2014), and Winter 2015
(November 2014 to February 2015). Each variable is household specific, and measured as
average hourly water use. Welcome letters arrived in households’ mailboxes the last week of
March 2015. Between early May and early June, Water Smart sent the first HWR. Reports
were sent on a staggered schedule, and based upon an account’s billing cycle. Figure A.1

shows the start date tor the first HWR and each subsequent mailer.

Outdoor Watering Restrictions. The bottom of Figure A.1 describes the timing and days
of BWP’s various outdoor watering restrictions over this period. BWP had no restrictions
before July 2014. The outdoor watering schedule changed with seasons and the severity of
the drought. In the earliest and latest dates, households were allowed to water Tuesdays,
Thursdays, and Saturdays. The stringency of the watering restrictions and the enforcement
of these restrictions intensified during our treatment period. During the treatment year, the
primary restrictions only allowed outdoor watering from 6 PM to 9 AM on Tuesdays and
Thursdays in the summer. Winter restrictions limited outdoor watering to Saturdays only.
Figure A.6 provides an example of the messaging on HWRs that households received about
these restrictions. It highlights that households could only water on specific days, for 15
minutes per station, after 6 PM and before 9 AM, and could not water for two days after it

rained.

Home Water Reports. Figures A.2 to A.6 provide examples of the HWRs households
received through the treatment year. Figure A.2 shows an example of a conventional HWR,
our first treatment arm. The reports consist of a household comparison and injunctive norm,
water saving action recommendations, and utility and program messaging. Figures A.3 and
A.4 show the Hot WaterSmart HWRs. The only difference were the water saving messages,
which were tailored towards indoor water use activities and included energy savings for each
recommended action. Figures A.5 and A.6 show Hot WaterSmart Plus HWRs. Figure A.5
shows the initial notification for the ‘Conserve and Win’ program and Figure A.6 shows an

example of a progress update we provided to all households in the treatment.
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Figure A.2: WaterSmart Home Water Report
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Figure A.3: Hot WaterSmart Home Water Report
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Figure A.4: Hot WaterSmart Recommendations
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Figure A.5: Hot WaterSmart Plus Home Water Report (Report 1)
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Figure A.6: Hot WaterSmart Plus Home Water Report (Report 5)
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B Additional Results

B.1 Hour-of-Day and Day-of-Week Tables

Tables B.1 and B.2 present the estimated treatment effect coefficients graphed in Figures 4

and 5, respectively. Column headers correspond to each panel in the respective figures.

B.2 Treatment Comparisons

We now compare treatment effects for our hour-of-day and day-of-week regressions across
the three treatment arms. The results here further justify our focus on a joint treatment

indicator that we use in Section 5 of the paper.

Hour-of-Day Treatment Effects. Figure B.1 graphs point estimates for hour-of-day treat-
ment effects broken out by treatment group. We present results for summer (top panel) and
winter (bottom panel) months over the treatment year. The corresponding joint treatment
effects in the main text are Panels A1 and A2 in Figure 4. The treatment effects profiles
are nearly identical to our main result. The effects are not statistically different across the
three groups. The one exception may be the impact of Hot WaterSmart, where we esti-
mate slightly smaller treatment effects in early morning hours (4 AM to 8 AM) and larger
treatment effects in evening hours (8 PM to 11 PM) relative to other treatment groups,

particularly in the summertime.

Day-of-Week Treatment Effects. Figure B.2 graphs point estimates for day-of-week
treatment effects by treatment group for the treatment year.'® We present results for summer
(A1) and winter (A2) months, and further break out treatment effects by hours of the day
where watering is allowed (left panel) and prohibited (right panel). The corresponding figures
in the main text are Panels A1 and A2 in Figure 5. As in the main text, we see that the
largest treatment effects occur on days of the week and hours of the day when outdoor
watering is allowed. Treatment effects are nearly identical, and not statistically significant,

across any specification.

19We do not present corresponding results for the backslide and re-convergence period to save space.
Results are very similar, showing that treatment effects converge back to zero across all treatment groups.



B.3 All Watering Regimes

BWP had four different outdoor watering regimes in place during the treatment year and
two during the backslide period (Figure A.1). BWP allowed outdoor watering on Tuesday,
Thursdays, and Saturdays from May 1, 2015 to May 31, 2015. From June 1, 2015 to October
31, 2015, households could water their lawns on Tuesdays and Saturdays. From November
1, 2015 to March 31, 2016, households could water only on Saturdays. From April 1, 2016
to August 11, 2016, Tuesday and Saturday watering resumed. BWP adopted a permanent
Tuesday, Thursday, Saturday watering schedule on August 12, 2016. In Section 5.3, we
restrict our attention to the Tuesday/Saturday and Saturday regimes during the treatment
period, and the Tuesdays/Saturday regime during the backslide period since they covered

most of the sample.

Figures B.3 and B.4 compare day-of-week treatment effects across all watering regimes.
As in Figure 5, we show treatment effects for hours of the day when outdoor watering
was permitted and those when it was not. We see no discernible difference in households’
water use during the first treatment regime (5/1/15 to 5/31/15, Panel Al). The result is
unsurprising since we find no treatment effect in May 2015 since households were beginning
to receive their first HWRs (Figure 3). The largest treatment effects are on Tuesdays and
Thursdays during the remaining treatment regimes (Panels A2 to A4). Even when winter-
time restrictions allowed watering on only Saturday (11/1/2015 to 3/31/2016, Panel A3), we
continue to find a large treatment effect (= 1.5 gals/hour) during morning and evening hours
on Tuesdays. The results suggest that habits developed in the first half of the treatment
period persisted through the winter months. The treatment effect increased on Tuesday
watering hours when BWP returned to a Tuesday/Saturday schedule (April 1, 2016 to April
30, 2016, Panel A4), suggesting treatment households watered their lawns less than control

households when they were permitted to water again.

As in Figure 5, we continue to see the largest treatment effects during watering hours on
Tuesdays and Thursdays in the backslide period (5/1/2016 to 8/10/2016, Panel B1). The
treatment effects are no longer detectable by the time that BWP instituted its Tuesday,
Thursday, Saturday schedule mid-August 2016 (Panel B2).



B.4 Log Results

Short- and Long-Run Impacts Figure B.5 reproduces Figure 3 using the log of household
water use as our dependent variable.?’ Two differences are apparent. First, the ITT impacts
increase over the treatment year, while they are relatively constant after the second treatment
month in Figure 3. Second, treatment effects persist 10 months (as opposed to four months)
post-treatment. These differences highlight a key distinction between the specifications. Log
impacts depend on households’ response to treatment and the level of control households’
water use. A 0.5 gal/hr treatment effect is larger in percentage terms in the wintertime

because water use is lower in these months.

Patterns of Water Use: Hour-of-Day Figure B.6 presents hour-of-day results using log
water use as the dependent variable. Focusing on the treatment period, Column A, we find
a flatter response to treatment reflecting changing patterns of water use across hours of the
day. The largest treatment effect, around a 4% reduction, is still observed at 7 AM; however,
middle of the day impacts are larger, around 3%, due to the low baseline water use in those
hours. As before, we see that the overall patterns of the treatment effect remain in the

‘backslide’ period (column B), and dissipate in the ‘re-convergence’ period (column C).

Patterns of Water Use: Day-of-Week Figure B.7 presents our day-of-week results using
log water use as our dependent variable. Again, we see a flatter treatment response in
watering and non-watering hours of the day, reflecting changing baseline water use. We also
see a flatter response across days of the week, hiding heterogeneity since average water use
increases on Tuesday and Thursdays. We see similar features in panel A2. The treatment
effect remains significant and nearly identical in the summer after treatment, panel B. The
treatment effect is detectable during watering hours (evening to early morning) for some
days of the week even later after treatment ended, panel C, consistent with our findings in
Figure B.5.

20We transform households hourly water use y as log(y + 1) because there are many observations when
households water consumption is zero. Results are similar if we use other transformations like the inverse
hyperbolic sine.

10



Table B.1: Intent-to-Treat Effects by Hour-of-Day

Al A2 B C1 c2
(1) ©) 3) (4) (5)
Hour 1 -0.422 -0.371 -0.604 -0.515 0.529*
(0.439) (0.254) (0.566) (0.659) (0.297)
Hour 2 -0.032 -0.414* 0.289 0.975%* 0.232
(0.367) (0.251) (0.458) (0.492) (0.324)
Hour 3 -0.074 -0.329 -0.676 -0.446 0.154
(0.405) (0.307) (0.528) (0.621) (0.398)
Hour 4 0.701 -1.178%x -0.743 0.530 -0.382
(0.451) (0.405) (0.677) (0.672) (0.472)
Hour 5 -0.780 -0.490 -0.917 -0.856 -0.216
(0.700) (0.463) (0.757) (0.908) (0.577)
Hour 6 -0.796 -0.867* -0.673 -0.892 -0.071
(0.827) (0.515) (0.917) (1.145) (0.698)
Hour 7 S1.962%F  1.250%% -1.139 -0.240 -0.172
(0.929) (0.488) (1.043) (1.303) (0.632)
Hour 8 -0.907 -0.817* -1.570 -0.776 -0.639
(0.769) (0.429) (0.971) (1.162) (0.518)
Hour 9 -0.070 -0.267 -0.233 -0.635 0.045
(0.600) (0.316) (0.708) (0.813) (0.377)
Hour 10 0.148 -0.358 -0.140 0.897* 0.189
(0.347) (0.219) (0.469) (0.504) (0.253)
Hour 11 -0.424 -0.324%% -0.220 0.149 -0.026
(0.258) (0.157) (0.282) (0.311) (0.179)
Hour 12 -0.275 -0.399%%%  _(.440% -0.019 0.029
(0.188) (0.143) (0.243) (0.214) (0.152)
Hour 13 S0.412%%  0.4B3%FE 0 424%% 0.038 -0.036
(0.177) (0.141) (0.208) (0.198) (0.149)
Hour 14 -0.224 -0.376%% -0.137 -0.096 -0.013
(0.152) (0.131) (0.192) (0.188) (0.142)
Hour 15 -0.243 -0.424%F% _0.419%* -0.193 -0.107
(0.148) (0.125) (0.187) (0.181) (0.137)
Hour 16 -0.332%%  -0.410%%* -0.302 -0.006 0.051
(0.163) (0.128) (0.187) (0.176) (0.134)
Hour 17 -0.316%  -0.553%%%  _0.419%* -0.053 -0.025
(0.165) (0.143) (0.188) (0.197) (0.144)
Hour 18 S0.519%%  _0.558%FF 0 52g¥* -0.133 -0.176
(0.209) (0.159) (0.225) (0.235) (0.181)
Hour 19 -0.463%  -0.616%%* -0.389 -0.117 -0.294
(0.243) (0.218) (0.293) (0.368) (0.251)
Hour 20 SL261FF* 0.645%F% -0.590 -0.577 -0.177
(0.407) (0.241) (0.419) (0.507) (0.276)
Hour 21 -0.230 -0.TB5*FF _0.876* -0.303 0.121
(0.437) (0.289) (0.530) (0.564) (0.296)
Hour 22 -0.608 -0.889%%*  _1,086* 0.212 0.692%*
(0.492) (0.306) (0.629) (0.624) (0.340)
Hour 23 -0.776 -0.985% ¥ 0.543 0.437 -0.341
(0.500) (0.310) (0.566) (0.723) (0.389)
Hour 24 -0.470 -0.829% -1.000 -0.381 -0.542
(0.472) (0.299) (0.610) (0.727) (0.398)

Observations 68,894,068 68,038,145 46,071,940 85,357,023 84,264,247
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Table B.2: Intent-to-Treat Effects by Day-of-Week

Al A2 B C
(1) (2) (3) (4)
Day 1 (Water Hours) -0.170 -0.290%* -0.422* -0.097
(0.176) (0.137) (0.217) (0.174)
Day 2 (Water Hours) -0.305%* -0.591%**  -0.413** -0.388**
(0.165) (0.134) (0.205) (0.177)
Day 3 (Water Hours) -1.383***  _1.037FFF  -1.307*** 0.149
(0.411) (0.287) (0.465) (0.346)
Day 4 (Water Hours) -0.502%**  -0.595%** -0.396* -0.288
(0.176) (0.136) (0.219) (0.177)
Day 5 (Water Hours) -0.331* -0.504*** -0.460%* -0.012
(0.174) (0.145) (0.262) (0.313)
Day 6 (Water Hours) -0.264 -0.539***  -0.493** -0.261
(0.161) (0.135) (0.209) (0.174)
Day 7 (Water Hours) -1.142%%% 1 181FFF  -0.986** 0.109
(0.435) (0.412) (0.485) (0.358)
Day 1 (Non-Water Hours) ~ -0.377*%  -0.503***  -0.529** -0.193
(0.177) (0.149) (0.211) (0.168)
Day 2 (Non-Water Hours)  -0.324* -0.331°%* -0.232 0.051
(0.165) (0.130) (0.195) (0.150)
Day 3 (Non-Water Hours)  -0.520%**  -0.425%%*  -0.446** 0.026
(0.191) (0.137) (0.215) (0.160)
Day 4 (Non-Water Hours) — -0.442%*%*  -0.390*** -0.393** -0.075
(0.157) (0.131) (0.197) (0.153)
Day 5 (Non-Water Hours) -0.260 -0.492%** -0.338 -0.100
(0.160) (0.136) (0.208) (0.160)
Day 6 (Non-Water Hours) -0.190 -0.327** -0.235 0.014
(0.159) (0.133) (0.209) (0.158)
Day 7 (Non-Water Hours) — -0.474**  -0.595%%*  .0.625** 0.023
(0.204) (0.178) (0.251) (0.180)
Observations 56,936,571 56,852,066 38,612,709 169,621,270
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Figure B.1: Hour-of-Day Results by Treatment Group
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Notes: The figure graphs point estimates for hour-of-day treatment effects by treatment group for the
summertime (the top figure) and the wintertime (the bottom figure). The corresponding figures in the
main text are Panels Al and A2 in Figure 4. For simplicity, no 95% confidence intervals are presented. All
regressions include baseline household water use, local weather controls, as well as date and hour-of-day

fixed effects.

13



Figure B.2: Day-of-Week Results by Treatment Group
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Notes: The figure graphs point estimates for day-of-week treatment effects by treatment group for the
summertime (A1) and the wintertime (A2). We further break the treatment effects out by hours of the day
where watering is allowed (left panel) and prohibited (right panel). The corresponding figures in the main
text are Panels A1l and A2 in Figure 5. All regressions include baseline household water use, local weather

controls, as well as date and hour-of-day fixed effects.
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Figure B.3: Day-of-Week Results: All Watering Regimes (Treatment)
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Notes: The figure graphs intent-to-treat effects and 95% confidence intervals for each day-of-week for the
joint treatment indicator during the treatment year. Al is the first outdoor watering regime (May 2015),
A2 is the second watering regime (June 2015 to October 2015), A3 is the third watering regime (November
2015 to March 2016), and A4 is the fourth watering regime (April 2016). Shaded bars indicate days when
BWP permitted outdoor watering. Blue circles and red diamonds denote treatment effects for
non-watering and watering hours, respectively. All regressions include baseline household water use, local

weather controls, as well as date and hour-of-day fixed effects.
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Figure B.4: Day-of-Week Results: All Watering Regimes (Backslide)
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Notes: The figure graphs intent-to-treat effects and 95% confidence intervals for each day-of-week for the
joint treatment indicator during the backslide period. B1 is the first outdoor watering regime (May 2016 to
August 10, 2016), and B2 is the second watering regime (August 11 2016 to August 31, 2016). Shaded bars
indicate days when BWP permitted outdoor watering. Blue circles and red diamonds denote treatment
effects for non-watering and watering hours, respectively. All regressions include baseline household water

use, local weather controls, as well as date and hour-of-day fixed effects.
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Figure B.5: Intent-to-Treat Effects over Time
(Log Water Use)
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Notes: The figure graphs monthly intent-to-treat effects and 95% confidence intervals over time for the

joint treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). The shaded area A
corresponds to the treatment period, area B corresponds to the ‘backslide’ period, and area C corresponds
to the ‘re-convergence’ period. All regressions include baseline household water use, local weather controls,

as well as date and hour-of-day fixed effects.
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Figure B.6: Intent-to-Treat Effects by Hour-of-Day
(Log Water Use)
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Notes: The figure graphs intent-to-treat effects and 95% confidence intervals over each hour-of-day for the
joint treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). The shaded area A
corresponds to the treatment period, area B corresponds to the ‘backslide’ period, and area C corresponds
to the ‘re-convergence’ period. All regressions include baseline household water use, local weather controls,

as well as date and hour-of-day fixed effects.
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Figure B.7: Intent-to-Treat Effects by Day-of-Week
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Notes: The figure graphs intent-to-treat effects and 95% confidence intervals over each day-of-week for the

joint treatment indicator (WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus). The shaded area A

corresponds to the treatment period, area B corresponds to the ‘backslide’ period, and area C corresponds

to the ‘re-convergence’ period. Treatment effects are presented separately for watering hours (red

diamonds) and non-watering hours (blue circles), where the shaded days are days where outdoor watering

restrictions bind. All regressions include baseline household water use, local weather controls, as well as

date and hour-of-day fixed effects.
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C Multiple Hypothesis Testing

Our study considers the impact of home water reports on many outcomes of interest and for
multiple treatments. This leads to natural concerns related to over-rejecting null hypotheses
using standard inference procedures. Here, we account for multiple hypothesis testing in a
few key ways to explore the sensitivity of our conclusions regarding the impact of the three
treatments as well as the impacts of HWRs on water usage patterns and rebate uptake. A
key challenge in implementing multiple hypothesis testing (MHT) corrections in our setting
are the number of observations. Many procedures that adjust p-values to account for MHT
involve bootstrapping the data. This is computationally challenging since our regressions
involve estimating models with up to hundreds of millions of observations. Further, some
empirical models estimate the impacts of three treatments, while others estimate patterns

of behavior using a joint treatment indicator.

We explore the importance of adjusting our inference to account for MHT using the pro-
cedure developed in Romano and Wolf (2005a,b, 2016) with code developed by Clarke et al.
(2020). The procedure uses re-sampling, bootstrap-based methods that produce adjusted
p-values that control for the family-wise error rate (FWER) in a more efficient manner than

classical corrections proposed by Bonferroni (1935) and Holm (1979).

We start by considering our main hypotheses. In Section 4, we test whether each of
the three interventions affected overall water use and water usage in the first versus last
six months of the intervention. Further, in Section 5, we test whether treatment affected
participation in utility rebate programs. Given the different time frequencies of the two
data sets, we take a conservative approach. We calculate the average water use for each
household over the entire treatment year, as well as the average use in the first and last six
months of the treatment period. We then apply the Romano-Wolf procedure to these three
average, household-level water usage outcomes and households’ participation in the three

rebate programs considered in Table 4.

Table C.1 presents the results. Even after eliminating all the high-frequency nature of
our data, we continue to find similar, and statistically significant, impacts of each treatment
on each water usage outcome. We also continue to find no impact of treatment on any
rebate usage. Conventional p-values, shown in parentheses, highlight the strong, statistically
significant impacts of each treatment on all three water use outcomes. Romano-Wolf adjusted

p-values, shown in brackets, adjust for MHT across the six outcomes and three treatments.
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As expected, adjusted p-values are larger, but we continue to find statistically significant

impacts of each treatment on every water usage outcome.

Tables C.2 and C.3 present similarly adjusted p-values that account for multiple hypoth-
esis testing across the different samples of our data and for different hours of the day and
days of the week, respectively. Again, given the sample size, we collapse our data to perform
each exercise. Further, given that we observe multiple observations for each household, we

use a cluster bootstrap procedure to account for within-household correlations in the data.

Table C.2 presents hour-of-day results. To estimate the Clarke et al. (2020) p-values,
we first collapse household water use to the average monthly water use for each hour. For
example, we calculate every households’ average water use in July 2015 at 4 PM, as well
as for every other hour-of-day and month-of-year. We then estimate the impact of the
joint treatment indicator interacted with each hour-of-day for each of the samples from
Panels A1, A2, B, C1, and C2 in Figure 4. Coefficient estimates are very similar to those in
Table B.1, highlighting that we recover similar estimates even with the lower-frequency data.
We continue to find the largest and most statistically significant treatment effects in early
morning and evening hours during the treatment period, with more modest reductions in the
middle of the day. The effects wane in the backslide and re-convergence periods (columns 3
through 5). Adjusted p-values are, on average, two to three times larger than conventional
p-values. Nonetheless, the primary outcomes we highlight in our paper remain statistically

significant during the treatment year, as seen in columns (1) and (2).

Table C.3 presents similar results for our day-of-week regressions. Each water-usage
outcome, in this case, is collapsed to day-of-week by hour-of-day by month. For example,
we calculate the average monthly water usage on Tuesdays at 4 PM in July 2015 for each
household. Again, coefficients are very similar to our main regression outcomes in Table
B.2. The largest treatment effects occur on days that households were allowed to water
outdoors during the hours when outdoor irrigation was permitted. Romano-Wolf adjusted
p-values are, again, typically two to three times larger than conventional p-values. Our main
conclusions remain, and we continue to find treatment had statistically significant impacts

during the days and hours that we highlight in our paper.

The above analysis has natural limitations. While we were conservative in not conducting
MHT adjustments using our hourly treatment data, none of the results adjust for every
outcome we consider in this paper. Such an adjustment would further increase our adjusted

p-values.
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Table C.1: Multiple Hypothesis Testing Corrections - Main Outcomes

Water Use  Sum Water Use  Win Water Use  Any Rebate  Appliance Rebate  Turf Rebate
1) (2) 3) 4) (5) (6)

WaterSmart -0.492%%% -0.485%* -0.583%%* -0.003 -0.003 -0.000
(0.0029) (0.0105) (0.0002) (0.3962) (0.3888) (0.9168)
[0.0220] [0.0459] [0.0040] [0.6287] [0.6287] [0.9002]
Hot WaterSmart -0.540%% -0.481%* -0.676%** -0.001 -0.000 -0.001
(0.0010) (0.0103) (0.0000) (0.8787) (0.9831) (0.6966)
[0.0040] [0.0339] [0.0020] [0.9561] [0.9860] [0.8962]
Hot WaterSmart Plus  -0.488%** -0.454%* -0.578%#* -0.003 -0.004 0.001
(0.0029) (0.0154) (0.0002) (0.3855) (0.2813) (0.6622)
[0.0120] [0.0579] [0.0060] [0.6188] [0.5170] [0.6986]
Observations 16,818 16,766 16,330 16,818 16,818 16,818

Notes: The table presents results from an OLS regression of each respective outcome on indicators for assignment to
WaterSmart, Hot WaterSmart, and Hot WaterSmart Plus. Conventional p-values are reported in parentheses, and Romano-
Wolf adjusted p-values, based on 500 bootstrap samples, are reported in brackets. *, ** *** denote significance at the 10%,

5%, and 1%level based on conventional p-values.
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Table C.2: Hour-of-Day Multiple Hypothesis Testing Corrections

Al A2 B C1 2
(1) (2) (3) (4) (5)
Hour 1 -0.420 -0.368 -0.661 -0.491 0.522%
(0.3396) (0.1482) (0.2510) (0.4534) (0.0784)
[0.5469] [0.4212] [0.5349] [0.5469] [0.2894]
Hour 2 -0.060 -0.397 0.325 1.000%* 0.229
(0.8701) (0.1143) (0.4770) (0.0426) (0.4787)
[0.8962] [0.3892] [0.8363] [0.1876] [0.8363]
Hour 3 -0.104 -0.333 -0.680 -0.436 0.158
(0.7988) (0.2790) (0.1965) (0.4824) (0.6904)
[0.9002] [0.7026] [0.6068] [0.8184] [0.9002]
Hour 4 0.720 S121 1Rk -0.726 0.504 -0.389
(0.1115) (0.0031) (0.2829) (0.4571) (0.4089.)
[0.3134] [0.0160] [0.5509] [0.6108] [0.6108]
Hour 5 -0.727 -0.516 -0.925 -0.898 -0.193
(0.2979) (0.2658) (0.2223) (0.3214) (0.7358)
[0.6547] [0.6547] [0.6467] [0.6547] [0.7066]
Hour 6 -0.750 -0.850% -0.649 -0.940 -0.085
(0.3618) (0.0977) (0.4790) (0.4112) (0.9025)
[0.7665] [0.3313] [0.7665] [0.7665] [0.9022]
Hour 7 S1.964%F  _1.274%%% -1.167 -0.277 -0.068
(0.0351) (0.0097) (0.2631) (0.8311) (0.9138)
[0.1218] [0.0499] [0.4890] [0.9681] [0.9681]
Hour 8 -0.961 -0.819% -1.481 -0.704 -0.563
(0.2165) (0.0557) (0.1277) (0.5420) (0.2760)
[0.4431] [0.2056] [0.3333] [0.5469] [0.4431]
Hour 9 -0.067 -0.251 -0.200 -0.632 0.072
(0.9118) (0.4308) (0.7770) (0.4355) (0.8492)
[0.9840] [0.8603] [0.9800] [0.8603] [0.9840]
Hour 10 0.163 -0.378* -0.109 0.896* 0.185
(0.6386) (0.0893) (0.8156) (0.0758) (0.4671)
[0.8343] [0.2435] [0.8343] [0.2375] [0.8144]
Hour 11 -0.414 -0.336%* -0.254 0.165 -0.011
(0.1058) (0.0331) (0.3725) (0.5958) (0.9487)
[0.3273] [0.1297] [0.6547] [0.7725] [0.9421]
Hour 12 -0.266 -0.407%%* -0.442% -0.018 0.029
(0.1567) (0.0047) (0.0698) (0.9337) (0.8508)
[0.3433] [0.0120] [0.1956] [0.9601] [0.9601]
Hour 13 S0.425%%  _0.474%%* -0.398% 0.036 -0.046
(0.0185) (0.0008) (0.0552) (0.8572) (0.7591)
[0.0519] [0.0060] [0.1178] [0.9321] [0.9321]
Hour 14 -0.236 -0.381%%* -0.119 -0.108 -0.023
(0.1214) (0.0038) (0.5361) (0.5664) (0.8720)
[0.3253] [0.0120] [0.8563] [0.8563] [0.8902]
Hour 15 -0.251% S0.458%%%  _0.411%* -0.249 -0.120
(0.0893) (0.0004) (0.0276) (0.1730) (0.3828)
[0.2056] [0.0020] [0.0679] [0.2695] [0.3912]
Hour 16 S0.355%%  -0.426%%* -0.296 -0.049 0.042
(0.0310) (0.0010) (0.1134) (0.7815) (0.7555)
[0.0878] [0.0020] [0.2136] [0.9102] [0.9102]
Hour 17 S0.331%F  L0.545%F%  _0.417** -0.062 -0.014
(0.0455) (0.0001) (0.0272) (0.7530) (0.9233)
[0.1297] [0.0020] [0.0798] [0.9361] [0.9361]
Hour 18 S0.520%*  -0.551%%*  _0.530%* -0.146 -0.175
(0.0128) (0.0005) (0.0188) (0.5311) (0.3311)
[0.0439] [0.0040] [0.0479] [0.5529] [0.5409]
Hour 19 S0.487F*  _0.614%%% -0.388 -0.173 -0.303
(0.0471) (0.0047) (0.1862) (0.6383) (0.2237)
[0.1577) [0.0220] [0.4271] [0.6168] [0.4271]
Hour 20 S1273%FK0.65TH* -0.584 -0.562 -0.179
(0.0019) (0.0063) (0.1640) (0.2622) (0.5140)
[0.0100] [0.0140] [0.3453] [0.4052] [0.4790]
Hour 21 -0.243 -0.769%%* -0.860 -0.299 0.109
(0.5806) (0.0081) (0.1040) (0.5931) (0.7129)
[0.9062] [0.0559) [0.3134] [0.9062] [0.9062]
Hour 22 -0.667 -0.899%%* -1.012 0.116 0.688%*
(0.1801) (0.0035) (0.1059) (0.8533) (0.0433)
[0.3054] [0.0180] [0.2774] [0.8343] [0.1497]
Hour 23 -0.764 -0.994%%* 0.557 0.397 -0.337
(0.1274) (0.0014) (0.3239) (0.5850) (0.3882)
[0.3792] [0.0120] [0.6088] [0.6088] [0.6088]
Hour 24 -0.464 -0.848%%* -0.986 -0.416 -0.499
(0.3257) (0.0047) (0.1050) (0.5657) (0.2056)
[0.5190] [0.0359) [0.2914] [0.5868] [0.4331]
Observations 2,312,554 2,289,118 1,517,933 2,861,685 2,849,460

Notes: Conventional p-values are reported in parentheses.

Romano-Wolf ad-

justed p-values, based on 500 clustered bootstrap samples at the household level,
are reported in brackets. *, ** *** denote significance at the 10%, 5%, and

1%level based on conventional p-values.
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Table C.3: Day-of-Week Multiple Hypothesis Testing Corrections

Al A2 B C
(1) (2 3) (4)
Day 1 (Water Hours) -0.175 -0.297%* -0.423%* -0.102
(0.3244) (0.0316) (0.0574) (0.5605)
[0.5549] [0.1038] [0.1617] [0.5988)]
Day 2 (Water Hours) -0.303* -0.594%** -0.414%* -0.371%*
(0.0646) (0.0000) (0.0484) (0.0357)
[0.1218] [0.0020] [0.1218] [0.1218]
Day 3 (Water Hours) -1.390%** -1.063*** -1.149%* 0.149
(0.0012)  (0.0003)  (0.0145) (0.6712)
0.0040] 0.0020] 0.0180] [0.6966]
Day 4 (Water Hours) -0.487%** -0.608*** -0.431%* -0.285
(0.0054)  (0.0000)  (0.0519) (0.1091)
0.0120] 0.0020] 0.0978] 0.1198]
Day 5 (Water Hours) -0.348%* -0.523%** -0.406 -0.022
(0.0486)  (0.0003)  (0.1486) (0.9439)
[0.1238] [0.0040] [0.2395] [0.9481]
Day 6 (Water Hours) -0.272%* -0.546%** -0.512%* -0.240
(0.0920) (0.0001) (0.0185) (0.1674)
[0.1856] [0.0020] [0.0599] [0.1856]
Day 7 (Water Hours) -1.125%* -1.205%** -0.863* 0.122
(0.0114) (0.0043) (0.0783) (0.7325)
0.0299)] 0.0160] [0.1098] [0.7405]
Day 1 (Non-Water Hours) -0.396** -0.521%** -0.509** -0.199
(0.0251)  (0.0005)  (0.0208) (0.2372)
[0.0599] [0.0040] [0.0599] [0.2455]
Day 2 (Non-Water Hours) -0.337%* -0.342%** -0.202 0.039
(0.0409)  (0.0088)  (0.3019) (0.7978)
0.0739] 0.0160] [0.4750] [0.7944]
Day 3 (Non-Water Hours) -0.488** -0.418%** -0.462%* 0.033
(0.0111) (0.0025) (0.0354) (0.8383)
[0.0120] [0.0060] [0.0639] [0.8343]
Day 4 (Non-Water Hours) — -0.453%%* -0.392%** -0.362%* -0.081
(0.0039) (0.0030) (0.0667) (0.5958)
[0.0080] [0.0080] [0.0878] [0.6188)]
Day 5 (Non-Water Hours) -0.268* -0.504%** -0.319 -0.104
(0.0977)  (0.0002)  (0.1283) (0.5173)
[0.2355] 0.0020] [0.2355] 0.5130]
Day 6 (Non-Water Hours) -0.214 -0.328** -0.246 0.006
(0.1855)  (0.0150)  (0.2563) (0.9715)
0.3932) [0.0379] 0.3932) 0.9701]
Day 7 (Non-Water Hours) -0.471%* -0.591%** -0.526** 0.026
(0.0214)  (0.0010)  (0.0413) (0.8869)
0.0579] 0.0100] [0.0599] [0.8842]
Observations 13,463,651 13,349,540 10,581,076 39,848,080

Notes: Conventional p-values are reported in parentheses. Romano-Wolf adjusted p-values, based
on 500 clustered bootstrap samples at the household level, are reported in brackets. *, ** %%

denote significance at the 10%, 5%, and 1%level based on conventional p-values.
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