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Abstract 

This paper evaluates the effects of annual fluctuations in weather on employment in rural Mexico 

to gain insight into the potential labour market implications of climate change. Using a 28-year 

panel on individual employment, we find that years with a high occurrence of heat lead to a 

reduction in local employment, particularly for wage work and non-farm labour. Extreme heat 

also increases migration domestically from rural to urban areas and internationally to the U.S. A 

medium emissions scenario implies that increases in extreme heat may decrease local 

employment by up to 1.4% and climate change may increase migration by 1.4%. 
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Climate change is predicted to bring increased incidence of extreme weather events, rising 

temperatures, melting ice caps, and changing precipitation patterns (Solomon et al., 2007). A 

growing body of literature suggests that the economic costs of climate change may be substantial 

and far-reaching, impacting agriculture, mortality, labour productivity, economic growth, civil 

conflict, and migration (Mendelsohn et al., 1994; Schlenker et al., 2005; Schlenker et al., 2006; 

Deschenes and Greenstone, 2007; Lobell et al., 2008; Schlenker and Roberts, 2009; Deschenes and 

Greenstone, 2011; Lobell et al., 2011; Dell et al., 2012; Feng et al., 2012; Hsiang et al., 2013; 

IPCC 2013; Graff Zivin and Neidell, 2014; Burke and Emerick, 2015).
1
 Ultimately, the magnitude 

of these costs will depend in part on how humans, governments, and institutions respond and adapt 

(Oppenheimer, 2013). The costs of climate change are expected to be particularly acute in 

developing countries, where households do not have access to the portfolio of adaptation strategies 

or avoidance behaviours available in more developed countries. 

The relationship between weather and agricultural volatility has been documented in a number of 

settings (IPCC, 2014). Rainfall-induced agricultural volatility has a long history of serving as the 

source of identifying variation to test hypotheses about incomplete insurance, imperfect credit 

markets, and consumption smoothing (e.g., Rosenzweig and Binswanger, 1994; Foster, 1995; 

Jacoby and Skoufias, 1997; Jensen, 2000). Until recently, however, the literature has remained 

relatively silent on the role of temperature in agricultural production and rural incomes. As the 

science of climate change has evolved, it has become clear that climate change will involve rising 

temperatures as well as changes in precipitation patterns. Motivated by a desire to understand the 

costs of climate change, a growing number of studies have examined the relationship between 

                                                           
1
 Dell et al. (2014) provide a thorough review of empirical studies that apply panel methods to 

investigate the relationship between weather and economic outcomes.  



2 

 

 

temperature and rainfall and health, agricultural production, economic growth, and migration in 

less-developed countries (Guiteras, 2009; Mendelsohn et al., 2010; Dell et al., 2012; Burgess et al., 

2013; Compean, 2013).  

This paper investigates the effects of temperature and precipitation on local employment decisions 

in rural Mexico, including the demand for hired labour, agricultural employment, and non-

agricultural employment. Aside from the channel of migration, little is known about the effect of 

rising temperatures on rural employment in less developed countries, despite the likelihood that 

labour reallocation will be one of the main mechanisms by which asset-poor households adjust to 

climate-induced shocks. This is in part driven by a dearth of longitudinal data on individual 

employment outcomes with the frequency and duration needed to investigate the relationship 

between weather and local employment. We overcome this hurdle by exploiting rich annual self-

reported employment data from 8,107 individuals between 1980 and 2007. We combine these data 

with village-level weather data collected from 1,334 stations to evaluate the effects of weather on 

rural Mexicans’ sector and location of work.
2
 

Our empirical approach uses year-to-year variation in observed weather to compare a given 

individual's employment decisions under various temperature and precipitation conditions. A cross-

sectional comparison of employment decisions across weather zones may suffer from omitted 

variable bias, inasmuch as average climate is correlated with other time invariant factors 

                                                           
2
 The decision to use weather station data over “gridded” or “reanalysis” data was informed by the 

rich temporal and spatial coverage of weather stations in Mexico. There are more than 5,000 

weather stations located in Mexico. Some of stations began recording temperature and 

precipitation data in the 1940s, and most have been recording information since 1980, the starting 

year of our analysis.  
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(Deschenes and Greenstone, 2007).
3
 Time shocks, such as state agricultural policies, also may be 

correlated with temperature. Our empirical approach controls for these potential confounding 

factors by utilizing presumably random year-to-year variation in weather after controlling for 

individual and state-year fixed effects. 

Given our empirical setting, local rural employment could be quite sensitive to weather shocks.
4
 

Small farmers (those with fewer than 5 hectares of land) dominate Mexico’s agricultural sector, 

owning or managing more than 77% of rural property (Juarez, 2013). Typically, these are 

traditional or subsistence farmers who rarely have access to improved seeds, irrigation, credit, or 

marketing infrastructure. Partly because of these constraints, production of maize - the basic staple 

crop used to define both growing seasons and growing conditions - is quite labour intensive.
5
 Local 

nonfarm sectors, linked to agriculture via household demand, are also labour intensive. Labour, 

both inside and outside of agriculture, may be one of the only margins of adjustment available to 

respond to weather shocks.  

Our results show that temperature shocks influence individual labour opportunities in rural Mexico, 

particularly for wage workers. They are robust to numerous measures of weather, potential 

confounding factors, and alternative modelling frameworks, though the effects of extreme events 

are sensitive to the choice of weather data. Using our preferred specification that allows for 

                                                           
3  

In our setting, households in locations with more variation in climate may already have integrated 

migration into their portfolio of activities. This would be consistent with Rosenzweig and Stark's 

(1989) finding that a high variance of profits induces households to diversify their income 

through migration.
 

4
 The impact of changing temperatures in Mexico extends beyond our setting. Notably, recent work 

demonstrates that demand for air conditioning in Mexico is increasing in both temperature and 

income (Davis and Gertler, 2015). 

5
 Compared to the U.S. which requires 0.14 or less person days to produce a ton of maize, on 

average 14 person days are required in Mexico (Turrent Fernandez and Serratos Hernandez, 

2004). 
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nonlinear impacts of temperature by modelling temperature as growing degree days (GDDs) and 

harmful degree days (HDDs), we find that an additional HDD (e.g., 1 growing season day with a 

temperature increase from 32.5 C to 33.5 C) and a 1 standard deviation increase in HDDs decrease 

the probability of local employment by 0.05 and 1.90 percentage points, respectively. Consistent 

with our theoretical predictions, this reduction includes a decline in non-farm labour and wage 

work. We also provide empirical support for our assumption that one channel through which 

weather impacts local labour markets is agriculture.  

The impacts of negative weather shocks are likely to extend beyond local labour markets and 

influence an individual’s decision to migrate. However, the relationship between migration and 

environmental change is complex; empirical evidence suggests that environmental shocks may 

both induce and constrain migration (Munshi, 2003; Barrios et al., 2006; Halliday, 2008; Gray and 

Mueller, 2012; Bazzi, 2016). This is because environmentally-induced migration depends on the 

permanence of the migration decision, demographics, migration distance and, importantly, the 

nature of the environmental shock. Recent studies on the migration implications of climate change 

have focused on the latter consideration, specifically, the link between climatic variation and 

migration. For the most part, these studies consider either climate induced migration at a macro 

level or restrict their measure of weather to only rainfall (Munshi, 2003; Barrios et al., 2006; Feng 

et al., 2010; Auffhammer and Vincent, 2012; Marchiori et al., 2012).
6
  Bohra-Mishra et al. (2014) 

                                                           
6
 Feng et al. (2010) make use of state-level data (from 1995, 2000 and 2005) in Mexico to quantify 

the effect of climate induced changes in agricultural productivity on cross-border migration from 

Mexico to the U.S. (Feng et al., 2010). Efforts to replicate this study find no evidence of a causal 

link between crop yield and emigration, and attribute this to the omission of a time fixed effect in 

the original study (Auffhammer and Vincent, 2012). In subsequent work, the (original) authors 

demonstrate the robustness of their main results for rural states in Mexico to the inclusion of time 

controls (Feng and Oppenheimer, 2012). 
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and Mueller et al. (2014) are exceptions; they provide micro-level examinations of the effect of 

temperature and rainfall on long-term intra-national migration.  

Our work adds a new and critical data point by assessing the effects of temperature and rainfall 

shocks on both intra-national rural-to-urban and international migration. Our results suggest that an 

increase in HDDs induces migration to the U.S. and from rural to urban areas in Mexico. Migration 

to urban areas also increases with positive weather shocks, suggesting that urban migration may be 

viewed by some as a strategy to mitigate the costs from negative shocks, and by others as a costly 

but desirable action.  

We use our econometric estimates and climate projections to simulate the predicted change in 

probability of working in a given sector and location in the year 2075, ceteris paribus. We find that 

under medium emissions scenarios, the probability of out-migration to urban areas in Mexico 

increases by as much as 1.4% by 2075. The increase in HDDs under a medium emissions scenario 

reduces the probability of working locally in rural Mexico by up to 1.4% and increases the 

probability of migration to the U.S. by up to 0.25%. These projections translate into 236,094 fewer 

individuals employed locally, 232,792 migrating to urban areas of Mexico, and 41,275 migrating to 

the U.S.  The decrease in local employment comes from reductions in both agricultural and non-

agricultural labour. Projections are sensitive to the climate model used; they are generally lower 

using the Community Climate System Model 4 Community Earth System Model (CCSM4; Gent et 

al. 2011) than the Hadley Centre Global Environment Model version 2 (HadGEM2; Collins et al., 

2008).  

Our results provide causal confirmation of the longstanding belief that warming temperatures will 

have local labour market implications in less-developed countries. While well-identified empirical 

evidence points to the labour market impacts of climate change in the U.S., little is known about 
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the labour market implications outside of this setting (Hornbeck, 2012; Graff Zivin and Neidell, 

2014). To our knowledge, our study provides the first such micro-level causal evidence, 

demonstrating that warming temperatures will meaningfully reduce the probability of local 

employment, particularly for non-agricultural and hired labour in rural Mexico. Integration with 

outside markets may partly mitigate the costs of climate change, as individuals respond to warming 

temperature by migrating to urban areas and internationally in search of employment. This finding 

is consistent with Bohra-Mishra et al. (2014) and Mueller et al. (2014), and it adds to the scarce 

micro-level literature on the impacts of climatic variation on migration. In addition to contributing 

to our understanding of local labour markets and migration in rural areas, this paper augments our 

ever-evolving understanding of the costs of climate change. Our results highlight the negative 

impact of climate change on rural labour markets, particularly for poor wage-labourer households 

that are most susceptible to local market conditions and may face the greatest response constraints.  

 

1.  Theoretical Considerations and Testable Hypotheses 

Our analysis posits that weather shocks influence labour allocations initially by impacting crop 

production, and then through linked local markets. To illustrate this, consider an agricultural 

household that derives utility from the consumption of non-agricultural goods and services (𝑋𝑛𝑎), 

leisure (𝑋𝑙) and agricultural goods (𝑋𝑎) . Agricultural goods are produced using labour (𝐿) and 

quasi-fixed land and capital (𝐾). The quantity produced is given by 𝑄 = 𝑓(𝐿, 𝜃; �̅�), and it is 

assumed that 𝑓𝐿 > 0 , 𝑓𝜃 > 0, 𝑓𝐿𝐿 < 0, and 𝑓𝐿𝜃 > 0. As in Ravallion (1988), the random variable 𝜃 

represents the realization of weather during a given year, where a higher value of 𝜃 indicates better 
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weather, which increases production.
7

 We further assume that weather and labour are 

complements.   

In the textbook model (Singh, et al., 1986) the agricultural household is a price-taker in all markets. 

The household maximizes utility in a single period subject to a full-income constraint (Y), which 

includes agricultural profits and the value of the household’s time endowment: 

max𝐿,𝑋𝑎,𝑋𝑛𝑎,𝑋𝑙
𝑈(𝑋𝑎, 𝑋𝑛𝑎, 𝑋𝑙)     𝑠. 𝑡.  𝑝𝑎𝑋𝑎 + 𝑝𝑛𝑎𝑋𝑛𝑎 + 𝑤𝑋𝑙 = 𝑦 = 𝑝𝑎𝑓(𝐿, 𝜃; �̅�) − 𝑤𝐿 + 𝑤𝑇.     (1) 

The prices of the agricultural and non-agricultural goods and the local wage are given by 𝑝𝑎, 𝑝𝑛𝑎,  

and 𝑝𝑙 = 𝑤, respectively, and 𝑇 denotes the household’s time endowment. Solving the production 

side of this model gives the familiar result: 

𝑝𝑎𝑓𝐿(𝐿, 𝜃, �̅�) = 𝑤.                                                                     (2) 

Demand for labour can then be characterized by
*( , , , )aL p w K  ; it is a function of weather 

outcomes; capital, which is assumed to be fixed in a year; and local prices. Maximizing utility 

subject to optimal full income 𝑌∗ = 𝑝𝑎𝑓(𝐿∗, 𝜃; �̅�) − 𝑤𝐿∗ + 𝑤𝑇  yields consumption demands: 

                                             
* *( , , , )i a naX p p w Y .        (3) 

The family labour supply ( *F ) is the difference between the time endowment and leisure demand:  

* * *( , , , )a na lF p p w Y T X  .        (4) 

                                                           
7
 In the empirical section of this paper, we precisely define how weather affects agricultural 

production. 



8 

 

 

A labour-deficient household will hire labour ( * 0H  ) at the margin to carry out its crop 

production: 

* * * * * *( , , , ) ( )a na lH p p w Y L F L T X     .       (5) 

The only difference between this model and the conventional agricultural household model is the 

inclusion of the weather-shock variable, 𝜃 . Equations (2) - (5) lead to our first two testable 

hypotheses: 

o HYPOTHESIS 1: A negative weather shock decreases agricultural labour demand.  

This follows directly from the first-order condition (2).  

o HYPOTHESIS 2: The negative weather shock reduces demand for hired labour.  

Assuming leisure is a normal good, the family labour supply increases as full income falls (4). This 

as well as the contraction in labour demand in (5) leads to a decrease in *H . 

A decrease in farm incomes also leads to a decrease in demand for non-agricultural goods. In poor 

rural economies, services that are by nature non-tradable constitute a large part of non-agricultural 

consumption demand. A local market-clearing constraint sets the sum of household demands equal 

to the supply ( S ) of services: 

* *( , , , ) ( , , )na a na na naX p p w Y S p w K .      (6) 

This yields a local equilibrium price and quantity. A contraction in the demand for services puts 

downward pressure on the local price, triggering a decrease in non-farm labour demand. By the 
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same logic as above, service-producing household-firms cut back on hired labour. This motivates a 

third hypothesis: 

o HYPOTHESIS 3: A negative weather shock will reduce non-farm labour demand. 

If local wages adjust to the shock, they may partially mitigate the impacts on hired labour demand. 

Integration with outside labour markets likely limits the wage response, however. In 2007, 30% of 

households in rural Mexico had migrants in the U.S. and 46.5% had migrants elsewhere in Mexico 

(Arslan and Taylor, 2012). Further, general equilibrium models for rural Mexico reveal that excess 

labour supply is likely to spill out into migrant labour markets as local wages fall (Levy and van 

Wijnbergen, 1995; Taylor et al., 2005). These stylized observations lead to our last hypothesis, 

o HYPOTHESIS 4: A negative weather shock will increase labour migration.  

Based on this simple theoretical framework, we expect to find that adverse weather shocks 

decrease local employment for both farm and nonfarm labour, decrease hired labour, and increase 

labour allocations outside the local economy, through migration.  

 

2.  Data and Summary Statistics 

Our empirical analysis integrates annual labour-allocation data from household surveys with daily 

weather station data from rural Mexico. 

2.1 Labour Allocation Data  

The data on rural Mexican employment come from the Mexico National Rural Household Survey 

(Encuesta Nacional a Hogares Rurales de Mexico—ENHRUM),
 
a nationally representative survey 
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of 1,762 households in 80 rural communities spanning Mexico’s five census regions.
8
 The survey 

was carried out in the winters of 2003 and 2008. 

The 2008 survey asked respondents retrospectively where and in which sector the household head, 

spouse, and all children of either the household head or spouse worked each year beginning in 

1990. The household reported whether each family member worked in an agricultural or non-

agricultural job and whether the job involved self-employment or wage work. The question was 

asked for local work, work elsewhere in Mexico, and work in the United States. For work 

elsewhere in Mexico, respondents also reported the state in which family members worked. In the 

2003 survey, the same format was used to collect employment history retrospective to 1980. One 

distinction from the 2008 survey is that information was only collected for a randomly chosen 

subset of individuals in each household. Due to this restriction on the sample, we use the 2008 

survey as our primary dataset and where possible combine it with the 2003 survey to create a panel 

of annual data on family members’ work histories spanning the period from 1980 to 2007.  

Table 1 reports summary statistics on the employment choices of working age individuals (Panel 

A) between 1980 and 2007 and for four selected years within this period. Information about 

household size (Panel B) is reported from 1990 onwards. The sample is comprised of 8,107 

individuals from 1,514 households; employment data are available in both survey rounds for 3,895 

individuals.  On average, 48% of individuals work locally, where local employment is defined as 

the sum of agricultural and non-agricultural employment both for self-employed and wage earning 

                                                           
8

 A description of the survey is available at: 

http://precesam.colmex.mx/ENHRUM/PAG%20PRIN_ENHRUM_.htm. We use the official 

definition of rural as people living in communities with fewer than 2,499 residents but more than 

50 inhabitants.  

http://precesam.colmex.mx/ENHRUM/PAG%20PRIN_ENHRUM_.htm
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workers.
9
 The dominant form of employment is local agricultural work, though the share of 

individuals working in this sector declined from 47% in 1980 to 23% in 2007. In our sample, 17% 

of all individuals are employed in local non-agricultural work, and employment in this sector 

increased from 15% to 17% over the study period.  

The probability of relocating within Mexico or to the U.S. increased between 1980 and 2007. In 

1980 there was a 9% chance that an individual worked in another state in Mexico and only a 2% 

chance that s/he worked in the U.S. By 2007, these probabilities had jumped to roughly 11% and 

10%, respectively. There is also cross-sectional heterogeneity in migration patterns, with the lowest 

levels of international migration occurring in the southern states and the highest levels occurring in 

the northern and central states. This heterogeneity may in part reflect regional differences in 

migration costs. 

Changes in the profile of employment between 1990 and 2007 can be partly attributed to the 

retrospective nature of the survey. As shown in Panel B of Table 1, the number of working age 

family members per household increases from 4.4 in 1990 to 7.4 in 2007. The possibility that a 

change in the employment profile may reflect the changing age structure of an individual (or 

household) presents an empirical concern if the age of an individual is systematically correlated 

with weather shocks. Both the science and economics literature have documented a relationship 

between weather and the timing of conception (Lam and Miron, 1991; Campbell and Wood, 1994; 

Pitt and Sigle, 1998), suggesting that weather shocks may be systematically related to the timing of 

                                                           
9
 The probability of employment in our sample is 68%. The sample is comprised of all working-age 

individuals. For comparison, according to the U.S. Bureau of Labour Statistics the 2013-2014 

employment-to-population ratio in the U.S., defined as the working-age population that is 

employed, was 59%. 
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births. To address the possibility that the changing age profile may confound our results, we later 

test the robustness of our results to the inclusion of age as a covariate. 

Another empirical concern arises from the use of self-reported retrospective data, and in particular 

the well-known difficulty of recalling the 20-year employment history of each family member 

(Bond et al., 1988; Smith and Thomas, 2003; Song, 2007). Deviations between actual employment 

and self-reported employment will lead to measurement error in the dependent variable. This may 

bias our estimates if weather shocks are systematically correlated with one’s recollection of past 

labour outcomes. Given that individuals have been shown to more accurately recall salient events, 

our results may reflect how weather affects workers’ recollection of the past as well as actual 

weather impacts. Measurement error may also produce a downward bias in the effects of extreme 

weather on employment if mild or favourable weather leads to an underreporting of unemployment 

and negative weather shocks are correlated with an over-reporting of unemployment. To 

investigate these possibilities, we make use of matched retrospective employment data from 1990-

2002, which allow us to determine whether respondents consistently recalled the employment 

history of family members in the two surveys.  

A final caveat when using the ENHRUM data is that only households with at least one member in 

rural Mexico at the time of the 2003 survey had a probability of being surveyed. Entire households 

that migrated from rural Mexico are excluded from our sample. If households respond to weather 

shocks by leaving rural areas, then our estimates will understate the true impacts of weather on 

employment.  

[Table 1] 
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2.2 Weather Data 

Daily weather data from 1,437 weather stations were obtained from the Mexican National Water 

Commission. The data include daily maximum and minimum temperatures and total precipitation 

between 1980 and 2007. To measure daily weather, 𝑊𝑚𝑙, in village 𝑚 we take a weighted average 

of readings from the nearest five (or fewer) weather stations, 𝑁, located within 50 km of the village 

centre.
10

 The weight (𝛼𝑛) assigned to each station is the inverse square root of the distance (𝑑) to 

the center of the village: 

 

 
𝑊𝑚𝑙 =  ∑ 𝛼𝑛(𝜔𝑚𝑛𝑙)

𝑁

𝑛=1

             (7) 

where 𝛼𝑛 =
∑ √𝑑𝑛

𝑁
𝑛=1

√𝑑𝑛
 and 𝜔𝑚𝑛𝑙 is the weather outcome recorded at station n of village m on day l. 

We normalize the weights so that their inverse over all stations in a village sums to 1.   

As is common when using data from weather stations, stations enter and exit the sample, and daily 

observations may be missing from existing weather stations. Missing data introduce measurement 

error, and this error may have meaningful implications when using both cross-sectional and time 

fixed effects (Auffhammer et al., 2013). Many of the stations date back to the 1960s, while others 

began collecting data more recently. Some stations were taken offline at some point in the past and 

no longer provide weather information. To account for entry and exit, we restrict our sample of 

                                                           
10

 The average distance between a village and stations is 33.5 km. On average, a village-day 

observation uses readings from 3.6 stations. 
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stations to those in which data are present for at least 75% of the sample days. This reduces the 

number of weather stations to 1,334.  

We predict missing weather data at a given station following Auffhammer and Kellogg (2011), 

with a few modifications. We regress weather at each station on weather at all other stations 

assigned to a village and use the predicted values to replace the missing observations. Weather at a 

given station remains missing if any of the regressors are missing. To predict the remaining 

missing observations, we drop the most distant station from the village centre and repeat the above 

step. We continue to reduce the number of stations used as regressors until the missing values have 

been filled or there are no remaining stations with which to predict weather. Upon completion of 

this procedure, less than 0.1% of the station-days are missing. To get a sense of the extent to which 

this procedure approximates the true data-generating process, we compare actual and predicted 

weather variables. The correlation coefficient is 0.92 and 0.91 for maximum and minimum 

temperature, respectively. The procedure performs less well for precipitation, suggesting that our 

constructed measures of precipitation (and to a lesser extent, temperature) contain some 

measurement error that could lead to attenuation bias.
11

 

Alternatively, we could have chosen to use “reanalysis” data. This would have removed the need to 

develop a procedure to account for missing observations. As discussed in Auffhammer et al. 

(2013), reanalysis data are particularly valuable in data sparse regions, but they have drawbacks, as 

                                                           
11

 Recall that this procedure relies on weather stations assigned to a given village to predict weather 

for the station missing data. We find that the normalized error between actual and predicted 

weather is greater for precipitation than temperature. We attribute this to the fact that there is less 

variation in temperatures (or more variation in precipitation) across the stations assigned to a 

given village.  
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well.
12

 Our decision to use weather station data was informed by the observation-rich nature of our 

setting. Later, we use the North American Regional Reanalysis (NARR) data to measure 

temperature and precipitation and compare the results to those using weather station data.
13

  

2.3 Measures of Weather 

Recall that weather, our regressor of interest, is measured daily, while employment, our dependent 

variable of interest, is measured annually. To analyse the effect of weather on employment, we 

construct multiple measures of annual weather, all of which are calculated using daily weather 

data. We restrict the sample of weather to include precipitation and temperature between May 1 

and October 31, since this roughly corresponds to the spring-summer growing season for maize, 

the dominant crop in rural Mexico (Galarza et al., 2011; Juarez, 2013).
14

 

                                                           
12

 Reanalysis data are produced from weather models that combine output from global climate 

models with observational data (e.g., weather stations) to generate non-missing weather data 

across space and time. Reanalysis data are particularly valuable in data sparse regions, because 

they provide weather measures based on models and observational data from elsewhere. 

However, they are constrained by structural assumptions that limit the ability to accurately 

capture weather extremes. This poses a concern given our focus on the relationship between 

extreme temperatures and labour allocation.   

13 
We use the National Centre for Environmental Protection (NCEP) NARR dataset available at 

http://www.esrl.noaa.gov/psd/ (Mesinger et al. 2006). Daily average temperature and 

precipitation from 1980 to 2007 are obtained at a resolution of 32 km x 32 km.  Bilinear 

interpolation is used to calculate a weather variable for the centre of each ENHRUM village. 

14
 In Mexico, maize is grown in two seasons, a spring-summer and fall-winter season, with the 

former responsible for over 75% of maize production. In the spring-summer season, planting 

primarily occurs in May and June and harvesting mainly occurs between September and October, 

though there is some regional variation in the growing season. The ideal growing conditions for 

corn include temperatures above 20 degrees C (68 degrees F) and rainfall between 600 and 1000 

millimetres per year. As corn begins to become reproductive, it is most sensitive to climate. This 

tends to occur in July for corn that is harvested in October or later.  

 

http://www.esrl.noaa.gov/psd/
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Averaging temperature across the season provides a straightforward approach to create an annual 

temperature measure. However, the use of monthly or less frequent average temperature attenuates 

much of the variation in daily weather and masks the importance of extreme temperatures. 

Furthermore, agronomic studies suggest that accumulated exposure to heat over the growing season 

determines crop growth, as opposed to a seasonal average.  

Therefore, we employ an alternative approach, which follows the standard convention in agronomy 

of converting daily mean temperatures into growing degree days (Herrero and Johnson, 1980; 

Wilson and Barnett, 1983; Bassetti and Westgate, 1993). This measure of temperature stems from 

agricultural experiments showing that below (and above) certain thresholds, plants cannot absorb 

(additional) heat, while within the bounds of an upper and lower threshold heat absorption 

increases linearly with temperature. We construct daily temperatures as the average of daily 

minimum and maximum temperature. Then, based on maize production in the U.S., we use the 

following formula to convert daily temperatures into growing degree days (GDD): 

 

𝐺𝐷𝐷(𝑇) =  { 

0          𝑖𝑓 𝑇 ≤ 8𝐶                               
𝑇 − 8      𝑖𝑓 8𝐶 < 𝑇 ≤ 32𝐶                      
 24         𝑖𝑓 𝑇 ≥ 32                                   

  (8) 

We take the sum of growing degree days in an agricultural season to form an annual measure.  

GDDs alone may not accurately account for the effect of extremely high temperatures on yields 

and hence employment choices. The effect of extremely high temperatures in (8) levels off at the 

optimum, whereas research has shown that temperatures above the optimum are harmful for 

agricultural yields (Schlenker and Roberts, 2009). 
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In addition to GDDs, we construct a measure of harmful degree days (HDDs), which incorporates 

the possibility that temperatures above a given threshold may be harmful. For a day at temperature 

𝑇,  

 𝐻𝐷𝐷(𝑇) =  𝑇 −  32 𝑖𝑓 𝑇 ≥  32𝐶 (9) 

As with GDDs, we sum HDDs over the growing season to construct an annual measure of weather.   

We later test the sensitivity of our results to our choice of growing season, temperature thresholds, 

and more flexible models of weather.  

2.4 Variation in Weather Data 

One consideration when including individual fixed effects and state-year fixed effects is that these 

controls may soak up most of the variation in weather. It is therefore important to evaluate the 

residual variation that remains. This will inform the extent to which the residual variation in 

weather is as large as the weather changes predicted by climate change models, and ensure that we 

can identify the effects of climate change on employment from observed variation in weather data. 

A map illustrating the location of each rural village and weather station in the sample (Figure 1) 

highlights that both villages and weather stations are spread throughout Mexico. This map also 

indicates that there is overlap in the weather stations used to measure village weather, implying that 

weather is likely to be spatially correlated across villages within a region.  

Table 2 reports variable averages as well as results on the residual variation in mean temperature, 

GDDs, HDDs, and total precipitation after controlling for various fixed effects.  Given that cross-

sectional variation in weather occurs at the village level, we define a weather observation as a 

village-year, thereby reducing the sample to 1,900 village-years.  The average temperature across 
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the sample is 22.98 degrees C. This translates into an average of 2,741 GDDs and 10.24 HDDs.  

Precipitation averages 708 mm per growing season.    

We regress each weather variable on village fixed effects, village and year fixed effects, village and 

year fixed effects and state-year trends, or village and state-year fixed effects. Each cell in Table 2 

presents the count of observations for which the absolute value of predicted weather exceeds actual 

weather by the threshold indicated in the column title of each panel. For example, column 1 of 

Panel A reports that in 789 village-years, or roughly 42% of total observations, the predicted 

temperature exceeds the actual temperature by 0.5 C, after conditioning on village fixed effects. 

[Figure 1] 

As evident in Table 2, time and location explain much of the variation in mean temperature, GDDs 

and HDDs. This is especially true of our preferred empirical approach, shown in the last row of 

each panel, which controls for village and state-year fixed effects. Under a medium emissions 

scenario, GDDs and HDDs are predicted to increase by 226 and 6 degree days. Panel B (C) of 

Table 2 shows that actual GDDs (HDDs) exceed predicted GDDs (HDDs) by at least 200 (10) in 

115 (216) observations, implying that there is modest overlap between the weather variation in our 

sample and the increase in HDDs and GDDs predicted under a medium emissions scenario. 

[Table 2] 

 

3.  Empirical Approach and Results 
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To identify the impacts of weather on labour allocation, we use a panel data approach that controls 

for time-invariant individual and state-year fixed effects (Deschenes and Greenstone, 2007; 

Guiteras, 2009; Schlenker and Roberts, 2009). We estimate the following model: 

 𝐸𝑖𝑡
𝑠 = 𝑓(𝑊𝑚𝑡; 𝛽𝑠) + 𝛾𝑗𝑡 + 𝜆𝑖 + 𝜖𝑖𝑡      (10) 

where 𝐸𝑖𝑡
𝑠  is a binary variable indicating whether individual i is employed in sector 𝑠 in year 𝑡. The 

local employment choices in this study are agricultural employment, non-agricultural employment, 

and wage work (which includes agricultural and non-agricultural employment). The employment 

decisions related to migration include work outside the village but within the same state, out of the 

state but within Mexico, or in the U.S. The regressors of interest, 𝑊𝑚𝑡, are functions of weather in 

year 𝑡  and village 𝑚 . Controls include both state-year (𝛾𝑗𝑡 ) and individual (𝜆𝑖 ) fixed effects. 

Estimation is carried out using a linear probability model, so coefficients 𝛽𝑠 can be interpreted as 

the change in probability that an individual is employed in a given sector resulting from a one-unit 

increase in the corresponding weather variable.
15

 Using the procedure developed by Cameron et al. 

(2011), we compute standard errors that are robust to contemporaneous correlation within a state-

year and serial correlation within a village.
16

   

Identification of the effect of weather on the location and sector of employment comes from 

deviations in village weather, controlling for annual state weather shocks. Our estimating equation 

                                                           
15

 In reality, an individual faces a set of employment opportunities in a given year, so a choice 

model such as a multinomial logit may better approximate the decision-making process. We later 

show that our results are robust to the use of this modelling framework.  

16
 We also compute standard errors using the procedure developed in Hsiang (2010) that allows for 

contemporaneous spatial correlation between villages located within 100 km of each other. Our 

results are robust to Hsiang standard errors.  
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further controls for fixed individual characteristics that may impact employment decisions. The key 

assumption behind this approach, which we later explore, is that conditional on individual fixed 

effects and state-year shocks, variation in weather is orthogonal to unobserved determinants of the 

choice of employment.  

3.1 Local Labour Allocation and Weather 

We begin by estimating the effects of GDDs, HDDs, precipitation (𝑃𝑚𝑡) and precipitation-squared 

on individual employment outcomes: 

 𝐸𝑖𝑡
𝑠 =  𝛽1

𝑠𝐻𝐷𝐷𝑚𝑡 + 𝛽2
𝑠𝐺𝐷𝐷𝑚𝑡 + 𝛽3

𝑠𝑃𝑚𝑡 + 𝛽4
𝑠𝑃𝑚𝑡

2 + 𝛾𝑗𝑡 + 𝜆𝑖 + 𝜖𝑖𝑡 (11) 

Our choice to capture the non-linear impacts of temperature by separately including HDDs and 

GDDs, and to allow for nonlinear precipitation effects by including precipitation and precipitation 

squared, is rooted in the existing literature (Deschenes and Greenstone, 2007; Guiteras, 2009; 

Schlenker and Roberts, 2009; Burke and Emerick, 2015). We later test the robustness of our results 

to our assumptions about the relationship between weather and labour.  

Table 3 reports results for the probability that an individual works locally (col. 1), works locally in 

agriculture (col. 2), works locally in a non-agricultural job (col. 3), or works locally for a wage 

(col. 4). Note that coefficients on HDDs and GDDs are the change in the probability of work in 

response to a 10 degree day increase. Four central results emerge from these models.  

As shown in column 1, HDDs lead to a meaningful decrease in the probability of being employed 

locally, with an additional HDD (say from 32.5 to 33.5 C) reducing the probability of local work 

by 0.05%. To provide some context, this implies that a one standard deviation increase in HDDs, 

which translates into an additional 36.5 HDDs, would decrease the probability of local employment 
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from roughly 47.8 to 45.9%, or 4%. Framed slightly differently, a one standard deviation increase 

in the growing season share characterized by HDDs (from 7 to 33) would decrease the probability 

of local employment by 1.5 percentage points. An extreme increase in HDDs, say from the mean to 

the 95th percentile, would lead to a roughly 48 degree increase in HDDs and a 2.5 percentage point 

reduction in the probability of local employment. This suggests that for a large range of observed 

weather, on average the local labour market effects of short-run negative increases in temperature 

are unlikely to exceed 5.5%. 

Second, the reduction in local employment is largely driven by a reduction in local wage work. 

This is consistent with the theoretical prediction that hired labour is sensitive to weather shocks. It 

also aligns with a hypothesis in which employers respond to negative shocks at the margin by 

hiring or firing wage workers. 

[Table 3] 

Third, most of the reduction in local employment occurs in the non-agricultural sector. The result 

that non-agricultural labour decreases with an increase in HDDs is consistent with our theoretical 

framework, in which there are strong linkages between agricultural income, demand for non-

agricultural goods, and demand for non-agricultural labour. To explain why the local non-

agricultural sector would be more responsive than the agricultural sector, we frame our results 

within three key observational features of our setting. First, relative to the agricultural market, the 

non-agricultural market is comprised of a high proportion of wage workers. Our data show hired 

labour shares in value added of 0.08 in agriculture and 0.16 in services. Second, in rural Mexico 

there is a high income elasticity of demand for services relative to food. Third the presence of 

agricultural support programs may dampen the effect of weather shocks on local agricultural 
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labour. This third possibility is consistent with recent work in the U.S. that finds the non-farm 

response to weather shocks to be more elastic than the agricultural response (Feng et al., 2012). 

Finally, the results highlight the nonlinearity of temperature impacts. By separately evaluating the 

effects of GDDs and HDDs, we find that an additional growing degree day has little impact on 

labour markets, while an increase in extreme temperatures causes a real and significant impact. In 

contrast, results from a model using average temperature or only GDDs mask the nonlinear effects 

of temperature on labour market outcomes. 

The measurement error in our measure of village precipitation makes us cautious in interpreting the 

impacts of precipitation on labour markets. Annual measures of precipitation do not significantly 

impact labour markets in rural Mexico, but we cannot discern to what extent measurement error 

biases these estimates towards zero.
17

 We do not expect this to influence our projections about the 

labour market implications of climate change, inasmuch as climate change models indicate that 

Mexico will experience relatively small changes in total precipitation under medium and high 

emissions scenarios. 

To investigate how the timing of weather shocks affects labour markets in rural Mexico, we 

disaggregate our measure of weather into specific periods within the agricultural season and 

evaluate the impact of these weather shocks on local employment. As shown in Table 4, negative 

shocks early in the agricultural season, when planting occurs, lead to a reduction in local work, 

including agricultural work.  These results are consistent with bad weather early in the season 

reducing land planted and the demand for agricultural labour across the year. Additional HDDs in 

                                                           
17 To investigate this concern, we later rely on weather measures obtained from the North American 

Regional Reanalysis data and estimate equation (11). As a preview to these results, we find that 

contemporaneous precipitation increases the probability of local work at a decreasing rate, 

though with the exception of local agriculture this effect is not statistically significant. 
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the middle of the agricultural season, when corn yields are most sensitive to temperature, also lead 

to a reduction in local work; however, we do not find that agricultural labour is statistically 

sensitive to mid-season shocks. This may be because our dependent variable is measured annually 

and employment may have happened earlier in the agricultural season, or farmers may compensate 

for a negative shock in the growing season by increasing family labour and decreasing hired 

labour.  

[Table 4] 

3.2 Migration 

The impacts of negative weather shocks likely extend beyond local labour markets and in the long-

run may influence migration, both within Mexico and to the U.S.  One limitation of our empirical 

approach is that short-run weather fluctuations may not be well-suited to capture these longer-run 

decisions. Nevertheless, insights into the migration implications of weather shocks are critical in 

order to understand the labour market impacts of climate change in less-developed countries. We 

now evaluate the effect of weather shocks on migration, recognizing that the results are likely to 

provide a lower bound estimate.  

Table 5 shows that migration both to the U.S. and within Mexico occurs in response to weather 

shocks. When weather is measured across the entire agricultural season (columns 1-3), negative 

shocks increase U.S. migration, and positive shocks, as measured by an increase in GDDs, induce 

relocation within Mexico from rural to urban areas. These results suggest that migration may be 

viewed by some individuals as a strategy to mitigate costs of negative shocks, and by others as a 

costly but desirable opportunity. The finding that U.S. migration increases with HDDs is consistent 
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with previous work in Mexico demonstrating that higher temperatures increase international 

migration rates through decreased crop yields (Feng et al., 2010).  

The remaining columns in Table 5 confirm that the timing of weather shocks within the agricultural 

season meaningfully impacts whether and where households migrate in response to shocks. In 

columns 4-6, we restrict our measure of weather to the early agricultural season (May and June), 

and in columns 7-9, weather is measured in the months of July and August, when most plant 

growth for maize occurs. Negative shocks early in the agricultural season increase the probability 

of U.S. migration, and negative shocks in the growth season induce migration to urban areas within 

Mexico. These findings are consistent with the hypothesis that, if individuals are able to migrate in 

response to negative weather shocks, this will happen relatively early in the growing season, when 

there is more time to cope and respond.  Early season shocks may also align better with the demand 

for labour at migrant destinations. 

[Table 5] 

3.3 Robustness  

Our primary results are predicated on a number of assumptions about the relationship between 

weather and labour outcomes. We now explore the sensitivity of our local labour employment 

results to various constructions of the weather variables, examine the possibility that confounding 

factors may bias our coefficient estimates, and test the robustness of our results to alternative 

modelling frameworks. Our primary results are robust to an array of considerations, and we 

interpret this as strong evidence that extreme heat shocks reduce the probability of local 

employment in rural Mexico. 

3.3.1 Weather considerations 
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Table 6 explores the sensitivity of our results to a number of judgments about the relationship 

between weather and local labour market outcomes. It highlights the robustness of our main 

qualitative result that an increase in the number of harmful degree days reduces the probability of 

local employment.  Incorporating within-day variation in temperature using the process used in 

Schlenker and Roberts (2009) and proposed in Snyder (1985) (col. 1), decreasing the harmful 

degree threshold to 30C (col. 2), increasing the harmful degree day threshold to 34C (col. 3), 

redefining the agricultural season to span May to November (col. 4), or excluding the precipitation 

variables from the estimating equation (col. 5) does not alter the primary finding that negative 

weather shocks reduce the probability of being locally employed.
18

 As reported in column 6, we 

also find that weather shocks occurring outside of the agricultural season do not impact local rural 

employment opportunities. In addition to serving as a robustness check, this result suggests that 

weather shocks operate through the channel of agriculture.  

[Table 6] 

While modelling temperature using HDDs and GDDs allows for some nonlinearity in impacts of 

temperature on employment, previous work suggests that a more flexible approach to modelling 

weather could better reflect the relationship between weather and agricultural yields (Schlenker and 

Roberts, 2009). To test the robustness of our results to this consideration, we constructed two-

degree C bins and measured weather as the number of days that the average temperature falls 

                                                           
18

 In alternative specifications, we evaluate the effect of precipitation exclusively, interactions 

between temperature and precipitation, and lagged weather on local labour outcomes. When we 

exclude temperature from the estimating equation, we continue to find no statistically significant 

effect of precipitation on local labour; the inclusion of interaction terms does not alter the 

interpretation of our results; and in specifications with lagged weather variables, we find only 

contemporaneous weather variables to be significant in impacting local work.  
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within each bin.
19

 Figure 2 illustrates marginal effects relative to a growing condition base bin of 

26-28 degrees. This figure confirms our earlier finding that a day above 32 degrees C decreases the 

probability of an individual working locally (by 0.1% per day relative to a day between 26 and 28 

degrees C). 

[Figure 2] 

In developing countries where weather station data are often sparse, economists have relied on 

reanalysis data to study the impacts of weather (e.g., Guiteras, 2009; Hsiang et al., 2011; 

Kudamatsu, et al., 2012). We have a setting characterized by a rich network of weather stations, 

thus affording us the opportunity to explore the sensitivity of our results to our choice of weather 

data. We replicate Figure 2 using the North American Regional Reanalysis data to measure 

weather; results appear in Appendix Figure 1. A comparison across the two sets of results 

highlights the consistency in the qualitative finding that an increase in the days characterized by 

optimal growing temperatures increases the probability of local employment, and that estimates are 

noisy. There is, however, a divergence in the impact of an increase in harmful degree days across 

the two data sets. Using the reanalysis data we cannot reject the hypothesis that extremely hot days 

have no impact on local employment. We are not the first to document the sensitivity of coefficient 

estimates to the choice of weather data. Auffhammer et al. (2013) compare annual deviations in 

mean weather across two gridded data sets and one reanalysis data set and find that substantive 

differences exist, particularly between the gridded and reanalysis data.  

                                                           
19

 Specifically, we constructed two-degree C temperature bins for all temperatures ranging between 

14-32C (e.g., 14-16, 16-18, etc.), a bin for all days on which the average temperature is less than 

14C, and a bin indicating the number of days that the average temperature is greater than 32C. It 

should be noted that to construct these bins we take a weighted average over all weather station 

temperature bins assigned to a village. Simply averaging temperature across all stations and then 

constructing bins would attenuate the variation in weather that we seek to capture. 
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We believe that these differences are largely driven by temperature extremes. The correlation 

coefficients between HDDs, GDDs, and precipitation using weather station and reanalysis data are 

0.81, 0.84, and 0.73 respectively, indicating that while there is a strong relationship between the 

two weather measures, there are also some differences. One limitation of reanalysis data sets is that 

the restrictions imposed on the model may prevent the model from capturing strong deviations in 

weather (Auffhammer et al., 2013). For this reason, as well as the presence of a rich set of weather 

stations, an interpolation procedure that has been relied upon by others, and the robustness of our 

results to numerous specifications, we choose to lean on the results produced using weather station 

data. We view the reanalysis results, and in particular the discrepancy in statistical significance 

across the two data sets, as adding another data point to the growing suite of studies that highlights 

the sensitivity of results to the choice of weather data. The discrepancy in the estimated effect of 

extreme weather across the two data sets reiterates the need to better understand why and under 

what conditions observational and reanalysis weather data sets diverge.  

3.3.2 Potentially confounding factors 

The retrospective nature of the survey causes the sample size to increase and the age distribution to 

change over time. These features of the data confound the interpretation of our results if birth rates, 

and hence the age of an individual, are systematically correlated with weather and meaningfully 

impact employment. To control for this possibility, we estimate a slight variation of equation (11) 

that includes the age of an individual as a covariate. Results, reported in column 1 of Table 7, make 

it clear that the coefficient estimates on weather are not sensitive to the inclusion or exclusion of 

this variable.  

[Table 7] 
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Measurement error introduced from the self-reported and retrospective nature of the survey may 

bias the estimated effects of weather on employment. This can occur if an individual’s ability to 

correctly recall past employment decisions is systematically correlated with weather shocks. Recall 

bias is a relevant consideration in our setting given existing studies that find that individuals more 

accurately recall salient events. A related concern is that mild weather might be systematically 

correlated with an underreporting of true unemployment, and extreme heat might be correlated 

with an over-reporting of unemployment. To assess the possibility that extreme weather at the time 

of employment is systematically correlated with measurement error in the dependent variable, we 

take advantage of a unique feature of our employment data – the collection of 1990 to 2002 

employment histories in two separate surveys. For these overlapping years we include a dummy 

variable indicating whether ( = 0) or not an individual’s reported employment history in a given 

year is identical across the two surveys. We assume that if the reported histories for an individual-

year are identical across the two surveys there is no measurement error in the dependent variable. 

The results, reported in column 2 of Table 7, suggest that while a discrepancy in recollection is 

systematically correlated with a lower probability of employment, our coefficient estimates on 

weather are robust to the inclusion of this control.
20

 

3.3.3. Decision making process 

Traditionally, labour allocation decisions in Mexico have been modelled as the result of a 

household decision-making process as opposed to an individual one (Stark and Taylor, 1991; 

McKenzie and Rapoport, 2011). In this framework, a household coordinates the sector and location 

                                                           
20

 It is also conceivable that cognitive issues are related to extreme heat or rainfall at the time of the 

survey. We are not aware of any extreme heat or rainfall events at the time of the ENHRUM 

surveys; such events would be unlikely given the time of year in which the surveys were carried 

out (winter, which is the cool and dry season in Mexico). 
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of work for each individual. To test whether our results are sensitive to this alternative decision 

making structure, we estimate equation (11) at the household level, where the dependent variable is 

the number of household members in a given year who work in a given sector, and condition on 

household size. The results, reported in column 3 of Table 7, are qualitatively similar to those 

reported in column 1 of Table 3. 

A choice model in which an individual simultaneously chooses one employment opportunity 

amongst an array of possibilities may better reflect the decision-making process. We estimated a 

multinomial logit model in which an individual faces the following choices in a given year: local 

agricultural work, local non-agricultural work, migration, or no employment. Marginal effects from 

a multinomial logit model with village and state-year fixed effects are reported for each 

employment opportunity relative to no employment in columns 4-6 of Table 7. Consistent with our 

earlier results, an increase in harmful degree days significantly decreases the probability that an 

individual is locally employed, and this holds for both agricultural and non-agricultural labour. In 

line with the results reported in Table 5, we continue to find that the probability of migration 

increases in response to an increase in extremely hot days.  

3.4 Extensions 

Thus far, we have assumed that a primary channel through which weather shocks impact labour 

markets is agricultural production. Self-reported information on corn yields and the value of 

agricultural output can be used to test the plausibility of this assumption using instrumental 

variables, as in Feng et al. (2010). Unlike data on employment and weather, which are available 

over the 28-year panel, the aforementioned variables are only provided for two years in the panel 

(those immediately preceding each survey). In what follows, we make use of the limited household 

sample on agricultural production to examine the extent to which weather shocks impact labour 
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market outcomes through agricultural production. We implement this using 2SLS, where in the 

first stage weather variables serve as instruments for agricultural production:  

 𝑌ℎ𝑡 = 𝑓(𝑊𝑚𝑡, 𝛼𝑠) + 𝛾𝑗𝑡 + 𝜆𝑖 + 𝜇𝑖𝑡 (12) 

htY  denotes annual corn yields or the value of agricultural output in year t for household h , and 

weather is modelled using the number of harmful degree days, growing degree days, total 

precipitation and total precipitation-squared. The validity of these weather instruments rests on the 

assumption that weather impacts local employment only through agricultural production. It is likely 

that weather impacts the probability of working through other channels, such as health, as well. 

Therefore, we view this empirical exercise as a tentative test for the assumption that weather 

impacts labour market outcomes through agriculture.  

Results from 2SLS are reported in Table 8. Our results suggest that an increase in weather-driven 

maize yields (Panel A) leads to a significant increase in the probability of being employed locally 

in agriculture, while an increase in the weather-driven value of agricultural output (Panel B) 

increases the probability of local non-agricultural employment. The finding that yields mainly 

affect agricultural labour, while the value of output impacts local non-agricultural employment, is 

consistent with our hypothesis that income serves as the link between agricultural and non-

agricultural markets. These results, particularly when combined with the finding that weather 

shocks outside of the agricultural season do not impact local employment, support our assumption 

that weather shocks impact labour markets through the channel of agricultural production.  

[Table 8] 
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4.  Climate Change and Labour Allocation in Rural Mexico 

We use our econometric estimates to simulate the predicted change in probability of working in a 

given sector and location in the year 2075, ceteris paribus. Our estimates are specific to the time 

period 1980-2007 and may change depending on future agricultural policies and local demographic 

trends. They also capture only the set of short-run responses to weather shocks, which may deviate 

from the long-run response to changes in weather patterns. Because our projections include only 

short-run responses, results should not be viewed as predictions. Instead, they provide insights into 

the potential magnitude of impacts of changing weather realizations on labour market outcomes for 

rural Mexicans. The results can be interpreted as the impact of climate change conditional on 

current long-run labour allocations. 

We use two global climate models–the Community Climate System Model 4 Community Earth 

System Model (CCSM4; Gent et al.. 2011) and the Hadley Centre Global Environment Model 

version 2 (HadGEM2; Collins et al., 2008)—to obtain estimates of daily temperature and rainfall 

over the period 1980 to 2075. Both models provide daily measures of historical and projected daily 

temperature and precipitation across the globe at a resolution of approximately 1 degree by 1 

degree.
21

 We consider two different global emissions scenarios: medium (rcp4.5) and high (rcp6.0).  

To construct village weather projections, we first take the village centre latitude and longitude and 

interpolate weather variables using the four nearest grid-points from each model.
22

 We then 

calculate the projected change in weather that will occur between 1995 and 2075 under medium 

and high global emission scenarios. We use these projected changes, together with the coefficient 
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 Historical and projected daily weather data from CCSM4 and HadGEM2 can be downloaded 

using the Earth System Grid Federation website. 

22
 To interpolate, we use general bilinear remapping interpolation.  
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estimates reported in Table 3 and Table 5 (columns 1-3),  to simulate the impacts of climate change 

on labour allocation in rural Mexico.
23

   

Appendix Table 1 reports the predicted changes in annual precipitation, average temperature, 

growing degree days, and harmful degree days from 1995 to 2075 from each climate model and for 

each region in Mexico, under medium and high emissions scenarios. Under all emissions scenarios, 

average temperatures increase in Mexico. This leads to an increase in GDDs and HDDs. The 

increase in HDDs is concentrated in the Northwest region of the country, where HDDs increase by 

32 (107) under the medium emissions scenario using the CCSM4 (HadGEM2) model. For a given 

emissions scenario, the HadGEM2 model projects a larger temperature increase than the CCSM4 

model.
24

  Both models predict an overall increase in agricultural season precipitation of around one 

percent.  Of course, if the timing of precipitation changes, this could impact labour markets in ways 

we are unable to capture.   

Using coefficient estimates from our preferred econometric model specifications, we project how 

climate change will affect employment under various climate change scenarios, ceteris paribus. 

Table 9 reports the results nationally and by region. In odd columns the projected changes in 

climate are restricted to HDDs, and in the even columns climate change is measured as the 

collective change in temperature and precipitation.  

                                                           
23

 We tested the sensitivity of our results to the choice of base year and terminal years and found 

that they are robust to these choices. An alternative approach to modelling the terminal year 

would be to average across a five- or ten-year span. However, this would attenuate much of the 

variation in weather, particularly extremely hot and cold days, that we seek to capture.  

24
 The HadGEM2 projects a higher average temperature under the medium emissions scenario than 

under the high emissions scenario. This is due to our choice of using 2075 as the terminal year. 

When 2074 is used as the terminal year, this pattern is reversed. 
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Consistent with our econometric results, decreases in local labour come from a reduction in 

agricultural and non-agricultural labour, including wage workers. These results are statistically 

meaningful when we restrict our climate change projections to HDDs only, but they become noisy 

once climate change projections include precipitation and GDDs, likely because of the large 

standards errors on GDDs and large projected changes in GDDs. Using the CCSM4 model, a 

medium emissions scenario and restricting the change in climate to HDDs only, climate change is 

projected to decrease the probability that a rural Mexican works in his/her home village by 0.31%, 

implying that, by 2075, 51,181 fewer individuals will be employed locally. We project a larger but 

qualitatively similar impact of climate change using the HadGEM2 model. Under a medium-

emissions scenario, the probability of working locally decreases by 1.4% (or 236,094 fewer 

individuals).
25

  

All climate change scenarios in both models suggest that individuals will out-migrate, relocating to 

more urban areas in Mexico. Under a medium-emissions scenario, out-migration to other areas in 

Mexico increases by 0.67% (CCSM4 with all measures of weather), which translates into 110,618 

individuals. Using the HadGEM2 model, the increase doubles to 1.4%, or 232,792 individuals. 

There is no statistically meaningful impact of climate change on migration to the U.S. when 

climate change projections include GDDs, HDDs and precipitation. When we restrict the climate 

change projections to HDDs only, a medium-emissions scenario leads to a 0.05% (8,750-person) to 

0.25% (41,275-person) increase in migration to the U.S. using the CCSM4 and HadGEM2 models, 

respectively. This migration response is smaller than the one reported in Feng et al. (2010), both in 

                                                           
25

 The World Bank World Development Indicator Database provides an estimated rural Mexican 

population of 26,208,586 in 2010.  According to the survey data used in the analysis, 63% of 

individuals are of working age on average.  This translates into a potential rural labour force of 

16,510,112 individuals. If the probability of local employment decreases by 0.55%, this translates 

into approximately 90,806 fewer people employed in local jobs.  
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percentage and absolute terms. This can partly be explained by differences in the sample, since our 

analysis restricts its attention to the rural population as opposed to the national population. It 

suggests that urban Mexicans may be better positioned to respond to climate change by migrating 

internationally.   

 [Table 9] 

 

5.  Conclusion 

This paper investigates the impact of annual fluctuations in temperature on labour markets in rural 

Mexico. We find that an increased occurrence of extreme heat decreases the probability that an 

individual works locally. Weather shocks disproportionately affect local wage work and non-

agricultural labour, consistent with a rural general-equilibrium model in which non-agricultural 

sectors are comprised mainly of non-tradable services.  

In response to negative weather shocks, individuals may migrate to other areas in search of 

employment. Given that migration is likely to be a longer-run decision and our empirical approach 

is equipped to identify short-run responses to weather shocks, our study might provide a lower 

bound estimate of migration impacts. Even in the short-run, we find that extreme heat shocks early 

in the growing season increase the probability that individuals migrate to the U.S. and from rural to 

urban areas within Mexico. 

Extrapolating these results under a medium emissions scenario, we project that the probability of 

migrating from rural to urban areas within Mexico will increase by 0.7% to 1.4% as a result of 

climate change. The probability of working locally will decrease by 0.3% to 1.4%, and the 
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probability of U.S. migration will rise by 0.05% to 0.25%. These percentage changes imply up to 

236,094 fewer people employed locally, 232,792 additional rural-urban migrants, and 41,275 more 

Mexico-U.S. migrants. Our results illustrate the sensitivity of impacts to both climate projections 

and behavioural responses.  

A caveat when interpreting these results is that our empirical approach only captures the set of 

short-run responses to weather shocks. These may deviate from the set of long-run responses to 

climate change, leading us potentially to understate or overstate the impacts of climate change on 

local employment. We underestimate labour market effects if employers maintain labour demand 

in response to short-run negative shocks. We overestimate them if, in the long-run, households 

adapt and mitigate the impacts of climate change on agricultural production and hence 

employment. Recent evidence from the U.S. suggests that adaptation will play a limited role in 

mitigating the impacts of climate change on agricultural yields (Burke and Emerick, 2015). Given 

that most Mexican farmers do not have access to the same portfolio of adaptation strategies as U.S. 

farmers, it is likely that they will be less favourably positioned to adjust to climate change.  

Our results suggest that climate change will have an economically significant impact on rural 

labour markets in less developed countries. Extreme temperatures will affect local earnings 

opportunities negatively. Poor wage-labourer households will be most vulnerable to these shocks, 

as their local employment opportunities are most sensitive to extreme heat.  
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Panel A: Individual Employment Mean Std. Dev. 1980 1990 2000 2007

Work in US 0.068 0.251 0.019 0.050 0.081 0.100

Work O/S Home State 0.103 0.303 0.092 0.095 0.112 0.109

Work in Same State 0.040 0.196 0.036 0.035 0.042 0.043

Local Work 0.478 0.500 0.622 0.482 0.448 0.400

Local Agriculture 0.309 0.462 0.468 0.331 0.264 0.230

Local Non-agriculture 0.169 0.375 0.153 0.151 0.184 0.171

Local Wage 0.267 0.442 0.315 0.266 0.263 0.242

Age 32.922 12.465 30.837 31.116 33.155 35.119

Observations 137162 1885 4684 6784 7531

Panel B: Household Characteristics

Household Members In Survey 5.820 3.620 2.102 5.389 6.638 7.379

Observations 38065

Notes: Means of the probability of employment in each category are reported for all years and by year for individuals 

in Panel A. Panel B reports the average number of members of working age included in the survey for all years and 

by year.

All Years Year

Table 1: Summary Statistics on Employment Choices
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Mean Temperature (N=1928)

Panel A: Number of Municipality-years when Predicted Mean Temp Differs from Observed by more than

Regressors 0.5 deg C 1.0 deg C 1.5 deg C 2.0 deg C 2.5 deg C

Village FE 789 257 89 33 14

Village FE, Yr FE 675 204 66 27 14

Village FE, State Trends 604 157 63 26 12

Village FE, State-yr FE 532 122 44 15 9

Growing Degree Days (N= 1900) Mean (sd) = 2741.52 (899.34)

Panel B: Number of Municipality-years when Predicted GDD Differs from Observed by more than

Regressors 100 dd 200 dd 300 dd 400 dd 500 dd

Village FE 717 219 83 49 40

Village FE, Yr FE 607 185 72 51 38

Village FE, State Trends 554 150 75 48 36

Village FE, State-yr FE 482 115 57 39 33

Harmful Degree Days (N = 1900) Mean (sd) = 10.24 (36.54)

Panel C: Number of Municipality-years when Predicted HDD Differs from Observed by more than

Regressors 1 HDD 10 HDDs 20 HDDs 30 HDDs 40 HDDs

Village FE 738 227 127 99 78

Village FE, Yr FE 1658 197 120 92 72

Village FE, State Trends 1439 244 145 92 64

Village FE, State-yr FE 905 216 128 88 67

Total Precipitation (N= 1900) Mean (sd) = 708.52 (482.79)

Panel D: Number of Municipality-years when Predicted Precipitation Differs from Observed by more than

Regressors 1.0 mm 1.5 mm 2.0 mm 2.5 mm 3.0 mm

Village FE 1905 1881 1869 1859 1844

Village FE, Yr FE 1916 1900 1884 1874 1859

Village FE, State Trends 1916 1900 1888 1874 1861

Village FE, State-yr FE 1907 1884 1852 1830 1800

Mean (sd) = 22.98 (4.99)

Table 2: Residual Variation in Weather

Notes: This table reports residual variation in annual village weather from a regression of weather on village fixed 

effects and various time controls. Each row lists the controls included. Each cell displays the count of observations 

for which the absolute value of predicted weather exceeds the actual weather by the threshold listed in the column 

heading. 
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(1) (2) (3) (4)

Local Work Local Ag Local Non-ag Local Wage

Harmful Deg Days -0.00509*** -0.00112 -0.00397*** -0.0028**

(0.00141) (0.000831) (0.0015) (0.00132)

Growing Deg Days -0.0001 -0.0000401 -0.0000599 -0.0000299

(0.000251) (0.000162) (0.000176) (0.000192)

Tot Precip (cm) -0.000137 -0.0000501 -0.0000867 0.0000988

(0.000281) (0.000251) (0.000133) (0.00019)

Tot Precip^2 0.000000 0.000000 0.000000 0.000000

(0.0000) (0.0000) (0.0000) (0.0000)

Fixed Effects Individual Individual Individual Individual

State-year State-year State-year State-year

Observations 136,926 136,926 136,926 136,926

R
2

0.688 0.735 0.688 0.683

Number of Ind. 8,107 8,107 8,107 8,107

Table 3: Effect of HDD and GDD on Local Employment

Notes: Coefficients on HDDs and GDDs are the change in probability of work in response 

to a 10 degree increase in the variable.  The dependent variable is whether an individual is 

employed in the sector indicated in the column heading in a given year.  Columns 1-8 report 

results from a linear probability model with standard errors clustered at the village and state-

year.  Additional controls include growing degree days and precipitation squared for each of 

the two time intervals.  Asterisks indicate statistical significance; ***p<0.01, **p<0.05, 

*p<0.1.  



 

 

(1) (2) (3) (4) (5) (6) (7) (8)

Local Work Local Ag Local Non-ag Local Wage Local Work Local Ag Local Non-ag Local Wage

HDD May/June -0.0121*** -0.00425** -0.00786*** -0.00522**

(0.00326) (0.00186) (0.00286) (0.00238)

Tot Precip May/June 0.00057 0.000681 -0.000111 0.000725*

(0.0007) (0.000545) (0.000314) (0.000448)

HDD July/Aug -0.00847*** -0.00122 -0.00725*** -0.00499*

(0.00274) (0.00149) (0.00279) (0.00272)

Tot Precip July/Aug -0.000508 -0.000228 -0.00028 -0.00014

(0.000431) (0.000381) (0.000283) (0.000333)

Fixed Effects Individual Individual Individual Individual Individual Individual Individual Individual

State-year State-year State-year State-year State-year State-year State-year State-year

Observations 136,926 136,926 136,926 136,926 136,926 136,926 136,926 136,926

R
2

0.688 0.735 0.688 0.683 0.688 0.735 0.688 0.683

Number of Ind. 8,107 8,107 8,107 8,107 8,107 8,107 8,107 8,107

Table 4: Effect of HDD and GDD on Local Employment

Notes: Coefficients on HDDs and GDDs are the change in probability of work in response to a 10 degree increase in the variable.  The 

dependent variable is whether an individual is employed in the sector indicated in the column heading in a given year.  Columns 1-8 report results 

from a linear probability model with standard errors clustered at the village and state-year.  Additional controls include growing degree days and 

precipitation squared for each of the two time intervals.  Asterisks indicate statistical significance; ***p<0.01, **p<0.05, *p<0.1.



 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

US Work Mexico Work Within State Work US Work Mexico Work Within State Work US Work Mexico Work Within State Work

Harmful Deg Days 0.000862* 0.00092 0.000348

(0.000446) (0.000588) (0.000548)

Growing Deg Days -0.000133 0.00028** 0.00000637

(0.000105) (0.000126) (0.0000761)

Tot Precip (cm) 0.000006 -0.0000803 -0.0000678

(0.000119) (0.00016) (0.0000888)

HDD May/June 0.00317** 0.00224 0.000192

(0.00151) (0.00178) (0.00129)

Tot Precip May/June -0.000497* 0.000108 -0.000175

(0.000263) (0.000337) (0.000192)

HDD July/Aug 0.00084 0.00194** 0.00081

(0.000671) (0.000883) (0.000786)

Tot Precip July/Aug 0.000181 -0.000195 -0.000277*

(0.000189) (0.000277) (0.000168)

Fixed Effects Individual Individual Individual Individual Individual Individual Individual Individual Individual

State-year State-year State-year State-year State-year State-year State-year State-year State-year

Observations 124,895 125,772 125,772 125,808 126,697 126,697 125,673 126,559 126,559

R
2

0.669 0.666 0.633 0.669 0.665 0.632 0.669 0.666 0.632

Number of Ind. 7,762 7,799 7,799 7,769 7,804 7,804 7,763 7,799 7,799

Notes: Coefficients on HDDs and GDDs are the change in probability of work in response to a 10 degree increase in the variable.  The dependent variable is whether an individual 

migrates to the destination indicated in the column heading in a given year.  Columns 1-9 report results from a linear probability model with standard errors clustered at the village and 

state-year.  Additional controls in columns 1-3 include precipitation squared. Columns 4-9 contain controls for growing degree days and precipitation-squared for each of two time 

intervals. Asterisks indicate statistical significance; ***p<0.01, **p<0.05, *p<0.1.

Table 5: Effect of HDD and GDD on Migration

 

 



 

 

(1) (2) (3) (4) (5) (6)

Sinusoidal Daily Weather HDD Cut-off at 30 C HDD Cut-off at 34 C

Weather from May to 

December Only Temperature

Including Non-ag 

Weather

Harmful Deg Days -0.00238** -0.003*** -0.00959*** -0.00484*** -0.00511*** -0.00489***

(0.0011) (0.00109) (0.00217) (0.00146) (0.00141) (0.00136)

Growing Deg Days 0.0000352 -0.0000309 -0.000148 -0.000126 -0.0000855 0.000113

(0.000189) (0.000258) (0.000253) (0.000242) (0.000251) (0.000197)

Tot Precip (cm) -0.000172 -0.000145 -0.000151 -0.000204 -0.000166

(0.000284) (0.000283) (0.000279) (0.000239) (0.000299)

Tot Precip^2 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Harmful Deg Days Non-Ag Season -0.0163

(0.0298)

Growing Deg Days Non-Ag Season -0.000477

(0.000431)

Tot Precip Non-Ag Season (mm) -0.00042

(0.000621)

Tot Precip^2 Non-Ag Season 0.00000

(0.0000)

Individual Individual Individual Individual Individual Individual

State-year State-year State-year State-year State-year State-year

Observations 136,926 136,926 136,926 136,141 136,926 135,618

R
2

0.688 0.688 0.688 0.689 0.688 0.689

Number of Ind. 8,107 8,107 8,107 8,100 8,107 8,095

Table 6: Effect of the Weather on Local Employment in Rural Mexico, Sensitivity to Weather Definitions

Notes: Coefficients on HDDs and GDDs are the change in probability of work in response to a 10 degree increase in the variable.  The dependent variable is whether an individual is employed 

locally in rural Mexico in a given year. Columns 1-6 report results from a linear probability model with standard errors clustered at the village level and the state-year. Variations on the definition of 

weather include the use of sinusoidal functions to get hourly temperature from daily minimum and maximum temperature (1), defining HDDs as occuring when daily average exceeds 30 (2) and 34 

(3), defining the agricultural season as May to December (4), only including temperature (5), and a test that includes weather both in the growing season and non-agricultural season (6).  Asterisks 

indicate statistical significance; ***p<0.01, **p<0.05, *p<0.1. 



 

 

(1) (2) (3) (4) (5) (6)

Local Work Local Work Local Work Local Ag Local Non-ag Migration

Harmful Deg Days -0.00526*** -0.00512*** -0.0213* -0.001795* -0.002867** 0.002616***

(0.0014) (0.00138) (0.0114) (0.001008) (0.001295) (0.000999)

Growing Deg Days -0.000105 -0.000108 -0.00129 -0.000134 0.0000704 0.000105

(0.000243) (0.000253) (0.000816) (0.000177) (0.000192) (0.000182)

Tot Precip (cm) -0.000149 -0.000131 -0.0000178 -0.0000703 -0.000133 0.000166

(0.000264) (0.000279) (0.00118) (0.000268) (0.000164) (0.000182)

Tot Precip^2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Age 0.00393***

(0.00114)

Mismatched Response -0.0559**

(0.0241)

Household Size 0.140***

(0.0161)

Fixed Effects Individual Individual Individual Village Village Village

State-year State-year State-year State-year State-year State-year

Observations 133,456 136,926 40,817 138,453 138,453 138,453

R
2

0.679 0.690 0.681

Number of Ind. 8,049 8,107 1,514

Table 7: Effect of Weather on Local Employment, Robustness to Confounding Factors 

Linear Probability Model Multinomial Logit (Marginal Effects)

Notes: Coefficients on HDDs and GDDs are the change in probability of work in response to a 10 degree increase in the variable.  Results from a linear 

probability model in which the dependent variable is an indicator variable denoting whether or not an individual is employed in local employment are reported 

in columns 1-3. Column 1 conditions on the age of an individual; column 2 includes a dummy set equal to 1 if employment histories are not identical across the 

two surveys; and the unit of observation in column 3 is a household-year.  Household size is the number of working age individuals in the household. Standard 

errors clustered at the village level and the state-year. Colums 4-6 report the output from a multinomial logit model where the base outcome is not-employed. 

Standard errors are clustered at the village.  Asterisks indicate statistical significance; ***p<0.01, **p<0.05, *p<0.1. 
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(1) (2) (3) (4)

Local Work Local Agriculture

Local Non-

agriculture Local Wage Work

Panel A

Corn Harvest (Kilos) 0.0000241 0.0000409** -0.0000168 0.0000227

(0.0000178) (0.0000186) (0.0000114) (0.0000142)

Fixed Effects Individual Individual Individual Individual

State-year State-year State-year State-year

First Stage F-stat 9.04 9.04 9.04 9.04

Individuals 1,896 1,896 1,896 1,896

Observations 3,792 3792 3792 3792

Panel B

Value of Agricultural Output 0.00000057 -0.0000004 0.00000102* 0.0000006

(0.000000662) (0.000000569) (0.000000551) (0.000000611)

Fixed Effects Individual Individual Individual Individual

State-year State-year State-year State-year

First Stage F-stat 17.26 17.26 17.26 17.26

Individuals 6,621 6,621 6,621 6,621

Observations 13,242 13,242 13,242 13,242

Table 8:  2SLS Model of Probability of Local Employment

Notes: The dependent variable is whether an individual is employed in the sector indicated by the column heading 

in a given year. Columns 1-4 report results from 2SLS. Instruments for maize yields (Panel A) and the value of 

agricultural output (Panel B) are the number of HDDs, GDDs, total precipitation and total precipitation squared in 

the agricultural season. Asterisks indicate statistical significance; ***p<0.01, **p<0.05, p<0.1.  
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National HDDs Only All Weather HDDs Only All Weather HDDs Only All Weather HDDs Only All Weather 

Local Work -0.0031*** -0.0055 -0.0072*** -0.0102 -0.0143*** -0.0186 -0.0112*** -0.0155

(0.00085) (0.006) (0.002) (0.0078) (0.004) (0.0117) (0.0031) (0.0114)

Local Agriculture -0.0007 -0.0016 -0.0016 -0.0028 -0.0032 -0.0049 -0.0025 -0.0042

(0.00051) (0.0037) (0.0012) (0.0047) (0.0024) (0.007) (0.0019) (0.0068)

Local Non-agriculture -0.0024*** -0.0039 -0.0057*** -0.0075 -0.0113*** -0.0139* -0.0089*** -0.0115

(0.00092) (0.0041) (0.0022) (0.0054) (0.0043) (0.0084) (0.0034) (0.008)

Local Wage -0.0017** -0.0022 -0.004** -0.0048 -0.008** -0.0091 -0.0063** -0.0074

(0.00080) (0.0045) (0.0019) (0.0058) (0.0038) (0.0089) (0.003) (0.0086)

US Migration 0.00053* -0.0024 0.0012* -0.0025 0.0025* -0.003 0.0019 -0.0036

(0.00027) (0.0023) (0.00064) (0.0028) (0.0013) (0.0041) (0.0010) (0.0041)

Domestic Migration 0.00056 0.0067** 0.0013 0.0091** 0.0026 0.0141*** 0.0021 0.0135***

(0.00036) (0.0029) (0.00085) (0.0035) (0.0017) (0.0052) (0.0013) (0.0051)

S-SE

Local Work 0.00017 0.00450 -0.00013 0.0065 -0.00054 0.0112 -5.28E-05 0.0097

(0.00090) (0.0055) (0.00069) (0.0077) (0.0028) (0.0133) (0.000270) (0.0114)

US Migration 0.0001 0.0003 -0.0001 0.0000 -0.0003 -0.0005 0.0000 -0.0001

(0.00031) (0.0019) (0.00024) (0.0021) (0.00098) (0.003) (0.000095) (0.0034)

Domestic Migration -0.00026 0.0076 0.00020 0.0123* 0.00081 0.0223** 0.000079 0.018*

(0.00078) (0.0049) (0.00060) (0.0065) (0.0024) (0.011) (0.00024) (0.0101)

Center

Local Work 0.0002 0.0088 0.0002 0.0114 0.0002 0.0163 0.0002 0.0142

(0.00024) (0.0122) (0.00024) (0.0159) (0.00016) (0.023) (0.00024) (0.0198)

US Migration 0.0000 -0.0137*** 0.0000 -0.0179*** 0.0000 -0.026*** 0.0000 -0.0225***

(0.000046) (0.0049) (0.000046) (0.0064) (0.000030) (0.0093) (0.000046) (0.008)

Domestic Migration -0.000086** 0.0029 -0.000086** 0.0039 -0.000057** 0.0059 -0.000086** 0.005

(0.000036) (0.0053) (0.000036) (0.0069) (0.000023) (0.0099) (0.000036) (0.0085)

Center-West

Local Work -0.0023** -0.0183 -0.00048** -0.0184 -0.00062** -0.0259 0.0023** -0.0268

(0.0011) (0.0161) (0.00023) (0.0177) (0.00030) (0.0251) (0.0011) (0.0286)

US Migration 0.0010 0.0070 0.0002 0.0070 0.0003 0.0101 -0.0010 0.0104

(0.00065) (0.007) (0.00014) (0.0077) (0.00018) (0.0109) (0.00066) (0.0124)

Domestic Migration 0.00042 0.0021 0.0001 0.0019 0.0001 0.0027 -0.00042 0.0025

(0.00049) (0.0035)\ (0.00010) (0.0038) (0.00013) (0.0054) (0.00049) (0.0061)

NW

Local Work -0.0082 -0.0201 -0.0148 -0.0276* -0.0272 -0.0456* -0.024 -0.0436*

(0.0056) (0.014) (0.01) (0.0159) (0.0184) (0.0241) (0.0162) (0.0242)

US Migration 0.0023 0.0024 0.0042 0.0044 0.0077 0.0084 0.0068 0.0075

(0.0016) (0.003) (0.0029) (0.0038) (0.0053) (0.006) (0.0047) (0.0057)

Domestic Migration -0.0015 0.0087* -0.0027 0.0082* -0.0050 0.0106 -0.0044 0.0122

(0.0023) (0.0048) (0.0041) (0.005) (0.0076) (0.0073) (0.0067) (0.0075)

NE

Local Work 0.0084*** 0.0097 -0.0066*** -0.0078 -0.0262*** -0.0286 -0.0029*** -0.0069

(0.003) 0.0084 (0.0024) (0.0142) (0.0094) (0.0198) (0.001) (0.0201)

US Migration -0.0014 -0.0152 0.0011 -0.0144 0.0045 -0.0119 0.0005 -0.0171

(0.00094) 0.0104 (0.00074) (0.0138) (0.0029) (0.0149) (0.00033) (0.0186)

Domestic Migration -0.0014** -0.0025 0.0011** -0.0001 0.0044** 0.0031 0.00048** -0.00088

(0.00064) 0.0069 (0.00051) (0.0095) (0.002) (0.0104) (0.00022) (0.0132)

Table 9: Projected Regional Impacts of Climate Change, 1995-2075

CCSM4 Hadley GEM2

Note: Each cell displays the predicted change in probability of working in each sector and location under emissions scenarios RCP4.5 and RCP 6.0.  CCSM4 presents 

predicted changes based on output from the Community Climate System Model 4.  Hadley GEM2 is the Hadley Center Global Environment Model, version 2.  Asterisks 

indicate statistical significance; ***p<0.01, **p<0.05, *p<0.1.

RCP4.5 RCP6.0 RCP6.0RCP4.5
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Figure 1: Map of Surveyed Villages and Weather Stations within 50 Km 
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Figure 2: Effect of 2-Degree C Bins on Employment Using Weather Station Data 

 

Notes: Points indicate the estimated impact on an additional day in each 2-degree temperature 

bin on employment in the indicated sector, relative to a base of 26-28 degrees C.  Ninety percent 

confidence intervals are included. 
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CCSM4 HadGEM2 CCSM4 HadGEM2 CCSM4 HadGEM2 CCSM4 HadGEM2

RCP4.5

National 1.30 2.48 226.41 416.97 6.09 28.55 9.54 9.54

S-SE Region 0.90 2.54 171.37 451.54 -5.10 15.98 -63.95 -63.95

Center 1.40 2.60 245.39 464.60 -0.09 -0.06 -9.95 -9.95

Center-west 1.31 2.13 242.61 391.37 -0.68 -0.19 16.80 16.81

NW 1.67 2.92 254.89 394.99 32.32 106.85 61.07 61.07

NE 1.03 1.92 191.04 347.68 -1.85 5.82 66.69 66.69

RCP6.0

National 1.66 2.43 284.01 414.93 14.39 22.37 9.54 9.54

S-SE Region 1.43 2.06 258.68 378.39 3.90 1.55 -63.95 -63.95

Center 1.81 2.25 320.45 400.63 -0.09 -0.09 -9.95 -9.95

Center-west 1.48 2.47 272.48 452.86 -0.15 0.69 16.80 16.80

NW 1.93 3.00 274.46 421.42 58.25 94.22 61.07 61.07

NE 1.64 2.28 299.60 419.14 1.47 0.64 66.69 66.69

Notes: Entries indicate the predicted annual change in weather variable under 2 emissions scenarios.  RCP4.5 is a medium emissions 

scenario and RCP6.0 is a high emissions scenario.  Changes are based on output from the Community Climate System Model 4 

(CCSM4) and the Hadley Center Global Environmental Model version 2 (HadGEM2). Regional and national changes are constructed 

from village weather averages.

Appendix Table A1: Predicted Change in Annual Weather, 1995 to 2075

Precipitation (mm)Average Temp GDDs HDDs
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Appendix Figure A1: Effect of 2-degree C Bins on Employment using Modelled Reanalysis Data 

 

Notes: Points indicate the estimated impact on an additional day in each 2-degree temperature 

bin on employment in the indicated sector, relative to a base of 26-28 degrees C.  Ninety percent 

confidence intervals are included. 
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