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Abstract

Adaptation to environmental change can carry negative externalities. We document one
such case: farmers in California respond to heat and drought by extracting more groundwater,
harming access to drinking water for nearby residents. Using yearly variation we show that
surface water scarcity and heat increase agricultural well construction, groundwater depletion,
and domestic well failures, and that well drilling accounts for a large share of the latter ef-
fects. In our setting, adaptation also exacerbates inequality. Effects on domestic well failures
are concentrated in low-income and Latino communities. Climate damage estimates may be
incomplete without accounting for the external costs of adaptation.
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1 Introduction

The effects of climate change are projected to be large in magnitude and broad in reach (Mendel-
sohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann, and Fisher, 2005; Schlenker and Roberts,
2009; Dell, Jones, and Olken, 2012; Lobell, 2014; Graff Zivin and Neidell, 2014). Efforts to quan-
tify the social costs of these climate effects must estimate not only the direct effects of weather
shocks and the extent to which adaptation actions can reduce these damages (Barreca et al., 2016;
Burke and Emerick, 2016), but also the costs of this adaptation (Carleton et al., 2022; Hultgren
et al., 2022). An aspect overlooked so far is that adaptation by individuals may have social costs
that differ from the private costs. If adaptation has externalities, then current approaches may un-
derstate the full social costs of climate change. And since many negative externalities are already
disproportionately borne by vulnerable groups (Banzhaf, Ma, and Timmins, 2019), the external
costs of adaptation may constitute yet another way in which climate change exacerbates existing
inequities (Carleton and Hsiang, 2016).

This paper empirically documents an important case in which climate adaptation has exter-
nal costs. We show that actions to reduce the costs of environmental change in one sector impose
harm on another group that is already socioeconomically disadvantaged. Our context is groundwa-
ter in California, a natural resource that provides irrigation for agricultural production as well as
drinking water for rural households. Nearly all agriculture in California is irrigated, from both sur-
face water sources (delivered via canals and rivers) and groundwater (pumped locally from wells).
As in most other parts of the United States and the world, groundwater extraction in California is
largely unregulated and unmonitored (Edwards and Guilfoos, 2021; Ayres, Meng, and Plantinga,
2021). The vast majority of this extraction is used for irrigation, and many areas that depend heav-
ily on groundwater have experienced water table decline (Department of Water Resources, 2020,
n.d.).

One important consequence of groundwater depletion is that it can harm access to drinking
water for rural households that rely on private groundwater wells for domestic purposes. Domestic
wells tend to be shallower than agricultural wells, and therefore, more susceptible to failing (i.e.,
running dry) as groundwater tables fall. In California, domestic wells are also concentrated in
disadvantaged communities comprised of low-income households and people of color.1 Access

1California’s San Joaquin Valley contains the majority of domestic wells in the state. It is a region that is over 50%
Latina/o and contains some of the highest rates of poverty and food insecurity in the state.
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to drinking water supplies among disadvantaged communities is a growing concern, and the links
between environmental conditions, agricultural groundwater extraction, and domestic well failures
remain unclear (Pauloo et al., 2020).

Our overall thesis is that farmers in California respond to heat and drought by increasing
groundwater extraction, which harms access to drinking water in low-income and Latina/o commu-
nities. We build the case for this thesis through several steps of empirical analysis. First, we study
how environmental conditions affect the outcomes that carry costs, showing that heat and surface
water scarcity cause groundwater levels to decline more rapidly and domestic wells to fail more
often. Then, we provide evidence that these damaging effects are due at least in part to adaptation
actions taken by agricultural producers. Because data on groundwater extraction itself is unavail-
able, we focus on the extensive margin, showing that the construction of new agricultural wells
speeds up in response to heat and water scarcity. Finally, we argue that the remaining steps in the
causal chain are mechanical, and we use known physical relationships to quantify the contribution
of the extensive margin to overall damages.

Our empirical approach uses year-to-year variation that differs across locations to identify
the effects of surface water scarcity and high temperatures on groundwater levels, domestic well
failures, and agricultural well construction. We build a geocoded well-level dataset spanning 28
years that is comprised of more than 180,000 domestic and agricultural wells and, on average,
about 20,000 groundwater monitoring wells. We combine these data with district-level weather
and surface water supply data from about 400 water districts between 1993 and 2020. Because
farmers and their water districts have some ability to influence their surface water, we instrument
for surface water deliveries using water allocation rules that are set annually by regulators based
on environmental conditions. Two-way fixed effects control for local fixed differences (such as
historical water rights) and state-level shocks (such as recessions) that may affect water access and
producer decisions.

Our research design measures the consequences of adaptation to transient shocks to en-
vironmental conditions, not of adaptation to long-term shifts.2 We make this choice because of
the econometric challenges involved in isolating true adaptation to climate change, and much of
the existing literature on climate adaptation makes a similar choice (Deschênes and Greenstone,

2In the framework of Lemoine (2023), the responses we study are primarily a combination of ex-post adaptation
(to realized but unforecasted shocks to temperatures and surface water) and ex-ante adaptation to short-run shocks (in
response to forecastable information about temperatures and surface water within a year).
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2007; Dell, Jones, and Olken, 2012; Blanc and Schlenker, 2017). Still, we argue that our results
carry implications for climate change in the same way that the weather impacts literature does
more generally. If agricultural producers exacerbate groundwater depletion in response to heat and
drought now, then they are likely to also do so in response to an increase in the frequency of heat
and drought. This distinction is not crucial for our main point: that the ways producers respond to
changes in environmental conditions can exacerbate negative externalities.

Our first result is that surface water scarcity and extreme heat cause groundwater levels
to fall more rapidly than usual. To put our estimates into quantitative context, we scale them to
the magnitude of a recent drought in 2021. Our results indicate that surface water scarcity equal
to average scarcity in 2021—0.7 acre-feet (AF) less than average—causes groundwater levels to
fall by 2 ft more than usual in the same year. The effect of this one-year shock persists over
time, with groundwater levels dropping an additional 4.7 ft more than usual in the subsequent six
years. Heat exposure equal to average exposure in 2021—23 harmful degree days (HDD) more
than average—causes groundwater levels to fall by 0.7 ft (8 in) more than usual.

Our second result is that surface water scarcity and extreme heat increase the rate at which
domestic wells fail. We estimate that the surface water scarcity and extreme heat experienced dur-
ing the 2021 drought raised the share of domestic wells that failed in the same year by 4 and 5
percentage points, respectively. Importantly, we find that the overwhelming majority of the do-
mestic well failures that result from water scarcity and heat occur in low-income communities and
communities of color. Because well failures are well-understood in hydrology to be a mechanical
result of declining groundwater levels (Pauloo et al., 2020), we can say that heat and drought re-
sult in faster groundwater depletion, which causes large numbers of domestic wells to fail, and the
costs are concentrated in communities that are already disadvantaged.

After showing that environmental shocks harm groundwater levels and drinking water ac-
cess, we turn to establishing a mechanism. Our third result is that both surface water scarcity and
extreme heat increase the number of new agricultural wells constructed in the same year. Surface
water scarcity equivalent to the 2021 drought results in 320 additional new agricultural wells per
year, a 32% increase in well construction relative to the usual pace. To understand the final link in
the causal chain—how new wells affect groundwater depletion—we lay out a simple conceptual
model that decomposes the observed effect on groundwater levels into three channels: the intensive
margin response (extracting more per well), the extensive margin response (building more wells),
and recharge. Using this model and our empirical estimates, we estimate that 58% of the effect
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of surface water scarcity on groundwater levels operates through the extensive margin of agricul-
tural well construction. Since an observable choice variable of producers accounts for a substantial
share of the damaging effects of environmental shocks, our results imply that adaptation can carry
external costs.

Our central contribution is to empirically illustrate a case in which adaptation to climate
change can produce negative externalities that are quantitatively important. We argue the external
costs of adaptation should be considered in both estimates of the social cost of carbon as well
as the design of climate adaptation policy. The literature on climate impacts recently has made
progress in quantifying the costs of adaptation in addition to the benefits (Schlenker, Roberts, and
Lobell, 2013; Carleton et al., 2022; Hultgren et al., 2022), but adaptation is typically modeled as a
choice involving only private tradeoffs. If agents adapt in part by offloading costs to other parties
without their consent, as they do in our setting, then profit-maximizing behavior will result in more

adaptation than is socially optimal. A sector-by-sector accounting of climate damages that ignores
externalities will then yield an over-optimistic view of the scope for adaptation and understate the
costs of climate change.

Our results also bring empirical evidence to bear on how climate change will affect ex-
ternalities induced by the open-access management of common pool resources. A longstanding
literature documents that open access conditions lead to too much extraction of groundwater at too
quick a pace (Hotelling, 1931; Pfeiffer and Lin, 2012; Ayres, Meng, and Plantinga, 2021). Less
clear is how climate change interacts with these externalities. Recent work on the water resource
impacts of climate change have focused on the link between climate and irrigation, showing in-
creases in irrigation as farmers seek to buffer against warming temperatures and more variable
precipitation (Taraz, 2017; Taylor, 2023). Our findings show that the externalities from groundwa-
ter consumption are exacerbated by the types of environmental conditions likely to worsen under
climate change, increasing the value of sound resource management.3 In short, groundwater man-
agement policy is climate adaptation policy.

Finally, this paper also adds a new dimension to our understanding about inequities in expo-
sure to environmental costs (Banzhaf, Ma, and Timmins, 2019). A recent literature documents that
disadvantaged communities bear a disproportionate burden of pollution and seeks to identify the
distributional implications of environmental regulations intended to reduce pollution (Cain et al.,

3Taylor (2023) also quantifies the externality at a global scale from warming temperatures by using GRACE satel-
lite measures to compare changes in thickness over a 12-year period.
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2023). This work highlights trends in pollution disparities over time and decomposes the relative
contribution of command-and-control and market-based approaches in explaining changes in this
gap(Fowlie, Holland, and Mansur, 2012; Bento, Freedman, and Lang, 2015; Shapiro and Walker,
2021; Hernandez-Cortes and Meng, 2023). Less is known about the equity implications of an
open-access management regime, which governs many common-pool resources.4 Our work shows
that adaptive behaviors under open-access management can exacerbate inequities when those with
access to capital impose costs on disadvantaged groups.

2 Agriculture and Water in California

The context we study is California, a setting where agriculture accounts for 80% of consumptive
use, droughts are increasingly frequent and severe, and access to reliable drinking water supplies
poses a concern in many rural communities. California is a leading producer of agricultural prod-
ucts in the U.S. and globally, comprising over a third of the nation’s vegetables and almost three-
quarters of its fruits and nuts (California Department of Food and Agriculture, 2020). One reason
for the state’s large market share in agricultural production is irrigation. Almost all agricultural
acres are irrigated, with over half of the farms using a mix of surface and groundwater sources.

Within the state, agricultural production is concentrated in the San Joaquin Valley (SJV) in
central California. The counties located in the SJV are primarily rural and experience some of the
highest poverty rates in the country. Many of these households use private domestic groundwater
wells for drinking water purposes. These domestic wells are relatively shallow, and as a result, are
vulnerable to weather-driven declines in groundwater levels.

Surface Water Irrigation

Surface water supplies, which account for approximately 60% of irrigation supplies in an average
year, exhibit substantial variation over time and across irrigation districts. Annual state-level sur-
face water supplies are largely determined by fall and winter precipitation in the Sierra Nevada and
other local mountain ranges. As the snowpack melts, this runoff is temporarily captured and stored
in reservoirs and later delivered to farmers and irrigation districts through a network of canals.

4Recent work highlights the net benefits of markets relative to open-access management in the context of California
groundwater (Ayres, Meng, and Plantinga, 2021).
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Large inter-annual swings in precipitation are endemic to California and lead to meaningful varia-
tion in surface water supplies from year to year.

A complex allocation system dating back to the early 1900s guides the assignment of water
across users, and introduces cross-sectional heterogeneity in surface water rights. A user, defined
as an irrigation district, holds an appropriative right to divert water directly from a nearby river
or stream and/or possesses a long-term contract to water deliveries provided by a state or federal
water project.5 The state-operated State Water Project and federally-run Central Valley Project
and Lower Colorado River Project comprise the three main surface water projects. Water contracts
specify a maximum annual volume of water supplied and a contract priority. This array of water
rights and water projects dates back more than 40 years and created an entitlement system where
neighboring water districts obtain surface water from different sources under different contract
conditions.

Within an irrigation district, large fluctuations exist in yearly water project deliveries. Each
year the government agency managing a water project announces allocation percentages for each
contract type. These percentages are based on reservoir levels, environmental conditions and
weather and determine how much of the maximum volume an irrigation district receives. Allo-
cation percentages are announced in advance of planting decisions and are largely based on winter
precipitation and reservoir levels. There are 13 different contract types, where the allocation per-
centage a district receives differs based on the water project and priority order. As a result, within
a year different districts receive different allocation percentages, depending on the contract type
and their appropriative water rights.

The actual surface water deliveries that a district receives can differ from allocations in a
few ways. Irrigation districts can purchase additional water mid-season on the spot market, pump
water from groundwater banks, or reserve water for up to a year in response to environmental
conditions.

Groundwater Irrigation

Groundwater has traditionally acted as a buffer to fluctuations in surface water supplies. To
counter the reduced surface water supplies that accompany droughts, dependence on groundwater

5Most agricultural water rights and contracts are held by irrigation districts – local government agencies – which
then supply water to farms within their jurisdictions. Within each district, water is typically rationed by quantity rather
than price, and by custom or law water is distributed uniformly to producers on a per-acre basis.
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increases, accounting for up to 80% of water supplies during droughts.
Historically, groundwater has been managed under an open-access regime, with agricultural

water use neither monitored, measured nor priced. Owners of land have the right to drill wells
and pump groundwater with few restrictions. The open-access nature of groundwater has led to
declining groundwater levels, higher pumping costs, and other negative consequences (Provencher
and Burt, 1993; Brozović, Sunding, and Zilberman, 2010; Edwards, 2016). For example, in the San
Joaquin Valley of California groundwater levels in some basins have experienced over a 100 foot
reduction in the past 10 years (Department of Water Resources, n.d.). Partly in response to these
concerns, in 2014 California passed historic groundwater regulation - the Sustainable Groundwater
Management Act (SGMA) – with the aim to sustainably use and manage groundwater by 2042.6

To increase groundwater irrigation on the intensive margin, a producer simply pumps more
water from an existing well. The main variable cost is the electricity required to power the well;
it scales roughly proportionally with both water quantity and depth. However, any single well
exhibits declining marginal yields in both pumping duration and power.

To increase groundwater irrigation on the extensive margin, a producer drills a new well.
They would do so either to irrigate more than existing wells can support, or if groundwater tables
fall below the depth of existing wells. The fixed cost of well construction varies widely based on
the completed drilled depth and intended use. Residential domestic wells are typically between
100 and 300 ft deep and cost approximately $10,000. Agricultural wells are drilled between 300
and 500 ft deep on average and cost about $75,000, but can cost upwards of $300,000 for high-
capacity wells (California State Board of Equalization, 2023). They also are drilled with a wider
diameter than residential wells to allow for higher flow rates. Modern material and construction
of wells allows for their lifespan to often exceed 100 years. New wells are required to be reported
to the state Department of Water Resources (DWR) and are typically constructed in under a week
(Central Valley Flood Protection Board, 2020).

Drinking Water in Rural Communities

Most individuals in California receive residential and drinking water from community water sys-
tems, but many rural communities obtain drinking water directly and exclusively from private

6Most SGMA sustainability plans were developed and will be implemented by local groundwater sustainability
agencies (GSA) starting in 2022, after our sample of study. There remain no direct restrictions on the drilling of
groundwater wells in these plans.
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domestic wells.7 Private domestic well users draw groundwater from aquifers that are shared with
agricultural users. Compared with agricultural wells, domestic wells are typically shallower and
therefore more susceptible to failing, or running dry, as groundwater tables decline. Dry wells im-
pose substantial costs on households, either through the costly construction of new, deeper wells
or the regular purchasing of alternative water sources, like bottled water.

Private domestic wells are concentrated in agricultural regions of California and the San
Joaquin Valley in particular (see Figure A2).8 These areas also comprise some of the most eco-
nomically and socially vulnerable communities in California. Populations in the San Joaquin Val-
ley are 50.2% Hispanic (compared to a national average of 18.9%) and 23.2% of households are
below the federal poverty line (compared to a national average of 12.9%). Private well failures are
also concentrated in relatively low income, rural, and non-white communities, as shown in Figure
1.

Impacts of Climate Change in California

Water scarcity in California is expected to be exacerbated by climate change. While climate mod-
els project only modest changes in the mean annual precipitation, the amount of water available
in reservoirs and canals for irrigation is projected to be reduced by 25% by 2060 (Wang et al.,
2018). The latter is partly due to increased precipitation volatility and insufficient infrastructure
to conserve water in reservoirs in the wettest years (Diffenbaugh, Swain, and Touma, 2015; Swain
et al., 2018). Warming temperatures also increase crop demands for water. The implication of this
is that even if surface water supplies do not change, extreme heat will lead farmers to demand more
water for irrigation (Rosa et al., 2020).

To date, the estimated impacts of climate change on California agriculture are mixed. The
earliest estimates ranged from negligible effects to profits of up to 15% (Mendelsohn, Nordhaus,
and Shaw, 1994; Deschênes and Greenstone, 2007). Others have estimated negative impacts
when accounting for water availability and crop quality, especially among fruits and vegetables
(Schlenker, Hanemann, and Fisher, 2007; Smith and Beatty, 2023). Historically, direct climate
damages have been mitigated through adaptive behaviors by farmers (Burke and Emerick, 2016;

7Community water systems are public water systems with over 15 connections and serve more than 25 people.
Between 3.4 and 5.8% (or 1.3 to 2.25 million) of Californians use private domestic wells (Pace et al., 2022)

8Deteriorating drinking water quality is also a concern for many of these users, especially since these water sources
are outside the jurisdiction of the Safe Drinking Water Act.
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Figure 1: Probability of Well Failure by Local Demographics and Well Characteristics

Note: Figure displays the mean probability of domestic well failure. Estimates and 95% confidence
intervals are from a linear probability model, where well failure is regressed on indicators for
whether the census tract is above or below median values for socioeconomic, agricultural, and
well characteristics. Demographic data for the Census tract in which each well is located come
from IPUMS NGHIS (Manson et al., 2022). “% Low-Income” is the percentage of households
with income below federal poverty thresholds set by the Census Bureau.
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Hagerty, 2021), including increased irrigation. These behaviors may explain why some earlier
studies calculated minimal damages. However, these mitigation channels may be unavailable in
the future either due to groundwater scarcity or regulation that curbs its over-use. This implies that
direct climate damages may be significantly worse in the future as water becomes more scarce.

3 Conceptual Model

We develop a simple conceptual framework based in physics to clarify the relationships between
farmers’ responses to heat and surface water, groundwater levels, and access to drinking water.
This framework will later allow us to quantify the intensive-margin response to heat and surface
water shocks despite the lack of data on groundwater extraction.

Let gross groundwater consumption for a representative farmer, denoted by C, equal the
product of the total number of wells w and the average amount of water pumped per well q. Farmers
choose the number of wells to construct and how much groundwater to pump from each well.
These decisions are functions of both surface water (s) - a substitute for groundwater - and extreme
heat (h):

C(s,h) = w(s,h)×q(s,h) (1)

Groundwater consumption in a year affects the end-of-year water stock. If annual groundwater
consumption exceeds recharge R(s,h), then the stock of water in the aquifer declines and the depth
to the remaining groundwater stock increases. The depth to the water table (DTW ) is given by:

DTW (s,h) = DTW0 +κ
[
C(s,h)−R(s,h)

]
, (2)

which depends on the starting depth to the water table DTW0, consumption, and recharge. The
effect of one AF of consumption on the depth to the water table is a direct function of the geological
characteristics of the aquifer. This is captured by a constant multiplier, κ .9

9Groundwater aquifers are porous rock and sediment formations that store groundwater. The volume of water an
aquifer can hold varies depending on porosity and sediment type. For highly porous aquifers, less total area is required
to hold the same amount of water relative to a less porous aquifer. κ captures the inverse of storativity, a physical
property of an aquifer. For an unconfined aquifer like much of the Central Valley, storativity is also equivalent to
specific yield, which measures the proportion of space that water can occupy within an aquifer. As an example, a
storativity value of 0.12, which is typical in California’s Central Valley Aquifer (Department of Water Resources,
2020), indicates that 12% of the volume of the aquifer can hold water. The other 88% is composed of porous rock and
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Consider a shock that reduces surface water supplies by a marginal amount ds in a given
year (alternatively, a shock that increases exposure to heat by dh). The marginal change in DTW

that results from this shock can be decomposed into three channels:

dDTW
ds

(s,h) = κ
[∂w

∂ s
(s,h)×q(s,h)+

∂q
∂ s

(s,h)×w(s,h)− ∂R
∂ s

(s,h)
]
. (3)

First, farmers may drill new irrigation wells and pump from them (the extensive margin): ∂w
∂ s (s,h).

Second, farmers may extract more groundwater from existing wells (the intensive margin): ∂q
∂ s (s,h).

Third, recharge is affected, ∂R
∂ s (s,h), since if less total irrigation water is applied to cropland, less

water drains through the soil into the aquifer below.10

The logic extends to well failures, since they are a physically deterministic function of the
local groundwater depth (Pauloo et al., 2020). We can write the probability of well failure as
F = F(DTW ) = F(DTW (s,h)). When the local water table falls below the depth of a domestic
well, the well runs dry and fails. Thus, the share of wells that fail as the result of a surface water
shock is proportional to the effect on depth-to-water:

dF
ds

(s,h) =
∂F

∂DTW
∂DTW

∂ s
(s,h) (4)

Equations 3 and 4 allow us to quantify the margins of response to surface water and heat
shocks within a single year. They also enable us to back out the intensive-margin effect, even
though groundwater extraction is not directly observable, because we observe or estimate the other
terms.

4 Data

Panel data on surface water deliveries and allocations, groundwater levels, and well construction
and failures form the primary dataset for this analysis. We supplement these data with additional
information on local weather. Table 1 provides summary statistics and lists the cross-sectional unit
of observation for each variable.

sediment.
10For a heat shock, recharge also falls because heat increases evaporation, meaning that less of the applied water

makes its way into the aquifer.
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Table 1: Summary Statistics

Unit Count Mean SD Min Max
Outcomes:
New Ag Wells DAUCO 10,416 11.1 19.4 0 316
Depth to Groundwater (ft) Monitoring Well 575,410 62.9 80.4 0 2,714.1
∆DTW Monitoring Well 575,399 0.3 6.1 -58.7 56.3
Probability of Domestic Well Failures Domestic Well 473,940 0.03 0.16 0 1
Independent Variables:
Ag SW Allocation (AF/crop acre) DAUCO 9,660 2.3 2.04 0 10
Ag SW Deliveries (AF/crop acre) DAUCO 10,416 2.2 1.9 0 10
Harmful Degree Days DAUCO 9,996 97.2 86.9 0 622.3
Growing Degree Days DAUCO 9,996 3,535.4 659.9 632.5 5,813.04
Annual Precipitation (mm) DAUCO 9,996 350.3 233.4 11.4 4,668.9
Crop Acres DAUCO 10,416 169,741.5 131,332.9 .2 502,692.3
Note: Table reports the number of observations, units of measurement, mean, standard deviations (SD), minimum, and maximum for each
outcome and explanatory variable. Mean and SD statistics are weighted by crop acres. Water is measured in acre feet per crop acre (AF/acre).

Surface Water Allocations and Deliveries

Panel data on surface water deliveries and allocations measure our covariate of interest, surface
water availability. These data were obtained from Hagerty (2021) and provide yearly measures of
water deliveries and allocations from the Central Valley Project (CVP), State Water Project (SWP),
Lower Colorado Project, and surface water rights from 1993-2020.11 We spatially aggregate these
data to geographic units called DAUCOs, the spatial intersection of DWR-defined “Detailed Anal-
ysis Units” (DAU) and counties (CO), and use the DAUCO as the unit of observation for surface
water deliveries, allocations, and agricultural well construction. 12 Water allocations measure how
much water a DAUCO is slated to receive at the beginning of the year based on rights, contracts,
and that year’s snow pack and reservoir levels. Deliveries reflect how much water a DAUCO ac-
tually receives by the end of the year. Our final measure of surface water supplies captures the
volume of surface water delivered in AF per crop acre (AF/acre) in the DAUCO.13

Figure 2 displays the variation in surface water allocations across the 390 DAUCOs in three

11Surface water delivery data for the CVP are first available from the U.S. Bureau of Reclamation in a digitized
format in 1993. Therefore, these variables determine the temporal length of our final panel for analysis.

12DWR uses DAUs to subdivide the state’s hydrologic regions and planning areas into smaller geographic areas for
agricultural land use and water balance analysis.

13We standardize water allocations and deliveries by dividing them by cropland acres in each DAUCO. There are a
number of reported extreme values of water allocations and deliveries, likely due to measurement error. To minimize
their influence, we Winsorize this variable at 10 AF/acre.
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different years. In relatively wet years, such as 2006, each DAUCO receives 100% of its water
allocation. In drought years, such as 1994 and 2015, some DAUCOs experience water curtailments
based on contract types and seniority of rights. This occurs because of weather-induced reductions
in surface water availability. Adjacent water districts can receive very different allocations, and
these differences in allocations vary year to year.

Depth to the Water Table

Monitor level measures of the depth to the water table are available from over 20,000 monitoring
wells on average between 1993 and 2020. Depth to the water table measures come from two
sources: the State Water Resources Control Board’s Groundwater Information System and DWR’s
Periodic Groundwater Level Measurement.14 Within each monitor-year, we select a single date to
measure the depth to the water table. We choose the reading closest to March 15 of the subsequent
year (e.g. March 15, 2016 to measure the 2015 end-of-year groundwater depth), since the water
table at that point in time will reflect the cumulative effects of groundwater pumping and recharge
in the preceding year. Year-to-year differences in monitor-level depth measure the change in the
depth to the water table.15

As shown in Table 1, groundwater levels decline by approximately 4 inches per year on
average. This statistic, however, masks substantial temporal and spatial heterogeneity in ground-
water levels. Figure 3 illustrates the change in depth to the groundwater in each DAUCO in three
different years. It makes clear that groundwater tables generally decline in the drought years 1994
and 2015, and replenish during wet years. Declines are most pronounced in location-years that
experience the largest surface water curtailments, with some regions experiencing annual declines
of over 10 feet.

14Figure A3 plots the location of each unique monitoring well in our sample and the boundaries of California’s prin-
ciple groundwater basins. This figures highlights that there is broad coverage of monitoring wells in the agricultural
centers of California, such as the San Joaquin Valley.

15To reduce the influence of extreme values, we exclude observations where a year-to-year change is more than 1.5
times greater than the inner decile range reported from all monitoring wells in the same DAUCO over our sample.
This rule removes observations with drastically different changes in groundwater levels than other local groundwater
measures. Some of these outlier observations are the result of a misplaced decimal, while other errors occur from
monitor errors, but we cannot easily distinguish the source of error in these data.
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Figure 2: Agricultural Surface Water Allocation Percentages

Note: Figure graphs the fraction of agricultural water entitlements to be received by
irrigation districts at the DAUCO level for three years: 1994, 2006, and 2015. Allocation
percentages, which are announced by the state prior to the growing season based on
environmental conditions, vary over space and time.
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Figure 3: Annual Changes in Depth to the Water Table

Note: Figure displays the average changes in depth to the water table within a DAUCO
for 1994, 2006, and 2015. During drought years like 1994 and 2015 areas in the San
Joaquin Valley experience large reductions in groundwater depth. Whereas, in wet years,
like 2006, those same areas experience small changes or even replenishment.
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Well Construction

We measure the extensive-margin response to surface water scarcity and extreme heat through the
metric of new agricultural well construction. We use the universe of Well Completion Reports from
DWR, which reports each new well’s location, the drilled well depth, intended use, and drilling
date. These reports also contain a record of which wells were destroyed and their locations.16 Our
final outcome is the count of the total number of new agricultural irrigation wells per DAUCO-year.
We also use the destruction records as an outcome in an alternative specification to test whether
new well construction is offset by old well destruction.

Figure 4 maps new agricultural well construction for the years 1994, 2006, and 2015. New
well construction varies from year-to-year and increases in drought years. This activity is also
concentrated in the San Joaquin Valley. A visual comparison of Figures 2 and 4 suggests that
well construction is more pronounced in location-years that experience the largest surface water
curtailments.

Well Failures

Panel data on domestic well failures at the well-year are available from 2014 to 2020. Beginning
in 2014, DWR created a system for households to report domestic well failures. Reporting in this
system is voluntary and is not linked to state-assistance or interventions (i.e. there are no known
differential incentives for reporting in certain locations or years). These data, shown on a map in
Figure A4, contain the coordinates for the reported dry well, the date the issue started, and if the
issue was resolved. Using the Well Completion Report data, we create a panel on the service status
of all domestic wells by geographically matching the reported failures to the registered domestic
wells. We denote a well-year as failed if a well failure is self-reported; otherwise we assume it is
functional. This is an undercount of the true number of domestic well failures, since household
reporting is voluntary. Still, it is an improvement on past approaches that estimate failures based
on assumptions about the relationship between well depth and groundwater table height.

Since 2014, over 4,000 domestic well failures have been reported. The black outlined
region of Figure A4 illustrates that these well failures are concentrated in California’s San Joaquin

16Since 1949, the California Water Code requires that well drillers complete a Well Completion Report with the
California DWR within 60 days of the well construction and/or destruction. Prior to 2015, all Well Completion
Reports were handwritten and later digitized for the construction of this dataset.
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Figure 4: New Agricultural Well Construction

Note: Figure plots the count of new agricultural wells constructed at the DAUCO level
for three snapshots in time: 1994, 2006, and 2015. New agricultural well drilling is
predominant in the San Joaquin Valley.
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Valley. They also occur disproportionately in locations that experience large agricultural surface
water curtailments.

Weather

To measure extreme heat and precipitation we obtain weather observations from Schlenker and
Roberts (2009) and PRISM climate data. The former, which are based on PRISM, provide daily
temperature and precipitation data spanning 1993 to 2019 at a 2.5 km by 2.5 km grid. Given that
our panel extends to 2020, we obtain daily temperature and precipitation from the PRISM data
product, which measures these variables at a 4 km by 4 km resolution. For each day, we calculate
the average temperature and collect information on total precipitation.

As is the convention with panel data studies on climate change, we the daily average tem-
perature, T , to measure heat exposure and intensity over a calendar year in each grid using growing
degree days and harmful degrees (Blanc and Schlenker, 2017),

GDD(T ) =


0 if T ≤ 8C

T −8 if 8C < T ≤ 32C

24 if T ≥ 32C

(5)

HDD(T ) =

0 if T ≤ 32C

T −32 if T > 32C
(6)

Precipitation is measured as local annual precipitation in millimeters. We sum GDDs, HDDs
and precipitation over the calendar year to construct an annual measure of grid-level weather. To
construct a DAUCO-level measure of weather, we take the average of all grids whose centroid is
located in the DAUCO.
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5 Empirical Model

Our empirical framework uses annual fluctuations in local weather and surface water supplies to
empirically quantify the effects of these shocks on access to drinking and agricultural groundwa-
ter. We first test the prediction that heat and surface water scarcity will lead to declining water
availability as measured by changes in depth to the water table. We then evaluate the extent to
which declining water tables impact drinking water access by testing the reduced form effects of
surface water scarcity and heat on the probability of well failure. Lastly, we empirically isolate
new agricultural well construction as one channel that explains declining water tables.

Changes in Depth to the Water Table

To evaluate the effect of heat and surface water scarcity on year-to-year changes in groundwater
levels, we use annual panel data to estimate a two-way fixed effects model,

∆DTWidt = β1SWDdt +β2HDDdt +B′Xdt +λt +αi + εidt . (7)

The dependent variable, ∆DTWidt , is the year-to-year change in the depth to the water table
for well i in DAUCO region d and year t. It measures the flow of groundwater levels at well i,
as opposed to the stock that is captured in the raw variable DTWidt . Specifying the outcome as
a flow better matches the treatment variables and avoids the risk of spurious correlation from the
non-stationary nature of the stock variable DTWidt . The underlying parallel trends assumption is
also more plausible for annual changes in groundwater depth. Trajectories of depletion vary across
locations for many reasons, so it is unrealistic to think that groundwater depths across locations
would move in parallel if exposed to the same values of the treatment variables. By differencing
the outcome, we allow for differential trends in depths, or equivalently, level differences in the
annual pace of depletion. We assume only that the pace of depletion across locations would follow
parallel trends absent differences in environmental conditions.

Our two regressors of interest are SWDdt and HDDdt . SWDdt measures surface water
deliveries in AF per crop acre in DAUCO region d and year t. Similarly, HDDdt is the annual
number of harmful degree days in DAUCO d and year t. The vector Xdt measures precipitation
and growing degree days; λt captures statewide annual shocks and trends; and αi absorbs fixed
well-level unobservables. Standard errors are clustered by DAUCO to account for serial correlation
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among wells within the same district.
To obtain estimates that represent average effects for agricultural regions of California even

though monitoring wells are not evenly distributed, we weight observations by the inverse number
of monitoring wells in the DAUCO times the crop area of the DAUCO. Weighting by the inverse
number of monitoring wells in the DAUCO moves from a dataset in which each well receives equal
weight to one in which each DAUCO receives equal weight, and then weighting by DAUCO crop
area moves to one in which each acre of crop land receives equal weight.

Instrumental Variables Model

Of the two treatment variables in Equation 7, HDDdt is likely exogenous, conditional on well and
year fixed effects and other measures of local weather. However, SWDdt is not, since irrigation
districts can influence their own surface water deliveries. For example, in a drought year, a district
may purchase additional surface water, while its farmers also extract more groundwater in drought
years. We therefore instrument for deliveries using surface water allocations, which are set ahead of
the growing season based on environmental conditions and cannot be influenced by farmers or local
officials. The exclusion restriction likely holds, since allocations are unlikely to be related to other
determinants of local groundwater demand: Allocations are set based on precipitation conditions
occurring in the mountainous regions during the rainy season, while groundwater demand occurs
in agricultural valleys during the summertime. Still, to rule out a possible correlation between local
weather and allocations, we include precipitation as a control variable in our full specifications.

Our preferred specification is the following model:

∆DTWidt = β1 ˆSWDdt +β2HDDdt +B′X idt +λt +αi + εidt

SWDdt = γ1SWAdt + γ2HDDdt +Γ
′X idt +λt +αi +µidt ,

(8)

where the instrument SWAdt measures surface water allocations in DAUCO d and year t. The first-
stage relationship between allocations and surface water deliveries is strong, with an F-statistic that
exceeds conventional thresholds (Table A1).

Domestic Well Failures

Changes in the depth to the groundwater table may cause domestic wells to run dry. To estimate
the effect of heat and surface water scarcity on domestic well failures, we use well-level panel data
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and again estimate an instrumental variables model with two-way fixed effects using two-stage
least squares:

Yidt = β1 ˆSWDdt +β2HDDdt +B′Xdt +λt +αi + εidt

SWDdt = γ1SDAdt ++γ2HDDdt +Γ
′Xdt +λt +αi +µidt .

(9)

The outcome, Yidt , is now a binary outcome indicating whether domestic well i reported
failing in year t. All other variables are defined as in (8), with the exception of αi which denotes
domestic well fixed effects. The coefficients of interest, β1 and β2, represent the change in likeli-
hood that a domestic well fails in a given year resulting from changes in surface water availability
and extreme heat, respectively. The regressions are weighted by the number of crop acres in the
DAUCO. Standard errors are clustered at the DAUCO level.

Agricultural Well Construction

Farmers may mitigate the costs of heat and surface water curtailments through increased ground-
water extraction on the intensive and extensive margins. For the extensive-margin response, we
estimate the effect on the count of new agricultural wells constructed. For this outcome, we use
Poisson regression, for which the feasible instrumental variables estimator is a control function
approach estimated with Psuedo-Poisson Maximum Likelihood (PPML) (Wooldridge, 2015),

E[Ydt |SWDdt ,HDDdt ,Xdt ,αd,λt ] = exp{β1 ˆSWDdt +β2HDDdt +B′Xdt +αd +λt +φ µ̂dt}

SWDdt = γ1SDAdt + γ2HDDdt +Γ
′Xdt +αd +λt +µdt .

(10)

The dependent variable is the non-negative count of new agricultural wells in DAUCO d and year t.
DAUCO fixed effects are captured by αd; all other variables are defined as before. The regression
is weighted by crop area in each DAUCO. Standard errors are clustered by DAUCO.

We use a Poisson model for this outcome because the parallel trends assumption is more
plausible in proportions than in levels. Consider two DAUCOs that are identical except that one is
twice as large as the other. A linear model would require the assumption that if two DAUCOs face
identical conditions of surface water and heat, any other time-varying factor adds the same number

of new wells to each DAUCO in that year. A Poisson model instead uses a more realistic “parallel
trends in ratios” assumption: absent differences in the treatment variables, background movements
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in well construction would vary multiplicatively across DAUCOs rather than additively.17 Poisson
regression is also arguably more appropriate for non-negative count data, and it may be more
efficient given the variable’s right skew (see Figure A5 for a histogram). For robustness, we also
report results using linear two-stage least squares.

6 Results

Damages: Groundwater Depletion and Well Failures

Table 2 reports results for the change in the groundwater depth from the two-way fixed effects
and instrumental variables models described in equations (7) and (8). Columns (1) and (2) display
the reduced-form effects of surface water allocations, without and with extreme heat and local
weather controls. Columns (3) and (4) display results in which allocations serve as an instrument
for surface water deliveries.

Our first main result is that surface water scarcity and extreme heat lead to groundwater
depletion. Our preferred estimates in column (4) of Table 2 imply that a one AF/acre reduction
in surface water deliveries leads to a 2.9 ft decline in the groundwater levels, holding extreme
heat constant. Groundwater depth is responsive to extreme heat, with groundwater levels declining
by 0.03 ft for every additional harmful degree day. Even holding water supplies constant, an
increase in extreme heat will directly increase demand for water resources. The reduced-form
effects reported in column (2) confirm the finding that surface water allocations have a negative
and significant impact on changes in the depth to the water table.

To provide context for the magnitude of these estimates, we consider the heat and surface
water scarcity experienced in 2021, a year that was especially hot and dry. In 2021, California crops
received an average of 1.5 AF/acre of surface water (0.7 AF/acre below average) and experienced
120 HDD (23 HDD above average).18 Our estimates suggest that the surface water curtailments

17This intuition is an informal generalization of the case of a binary variable and two periods, formalized by
Wooldridge (2023) and further explained by Chen and Roth (2023). The precise assumption in that case is that the
ratio of the expected values of the potential outcomes before and after treatment are equal between the treatment and
control groups. A linear regression with a log-transformed outcome would allow us to use a similar assumption but
is infeasible in our setting since the count of wells constructed can be zero. We also avoid “log-like” transformations
such as log(x+ 1) or the inverse hyperbolic sine because their estimates are sensitive to units and do not correspond
to a coherent estimand (Chen and Roth, 2023).

18For additional historical context on the size of typical shocks, we calculate the sample “within” standard deviation
by computing the standard deviation of surface water and heat for each DAUCO across time, and taking the average
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Table 2: Changes in Depth to the Groundwater

Reduced Form IV

(1) (2) (3) (4)

Ag SW Allocation (AF/acre) -1.967 -1.533
(0.674) (0.636)

Ag SW Deliveries (AF/acre) -3.684 -2.914
(1.196) (1.174)

Harmful Degree Days 0.0308 0.0309
(0.0160) (0.0115)

Observations 561,085 560,931 561,085 560,931
N Groups 83,782 83,762 83,782 83,762
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface
(ft) from 1994-2020 at the monitoring well level. Columns (1) and (2) report results from
the reduced-form OLS model. Columns (3) and (4) report the second-stage IV results,
where Ag surface water allocations are used as an instrument. All regressions are weighted
by the DAUCO crop acres divided by the number of monitoring wells and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported
in parentheses.

of 2021 resulted in a 2 ft decline in groundwater levels, and the extreme heat experienced in 2021
resulted in a 0.7 ft decline in groundwater levels.

Next, we show results for well failures in Table 3, which reports results from a two-way
fixed effects linear probability model of domestic failures on heat and surface water scarcity.
Columns (1) and (2) present reduced-form effects of surface water allocations, without and with
local weather controls. Columns (3) and (4) display results in which allocations serve as an instru-
ment for surface water deliveries. Given data constraints, the sample is restricted to self-reported
well failures spanning 2015 to 2020, inclusive.

Our second main result is that extreme heat and surface water scarcity increase domestic

across DAUCOs. A one “within” standard deviation change is equal to 0.54 AF/acre for surface water and 14 HDD
for extreme heat.
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Table 3: Linear Probability of Reported Well Failure

Reduced Form IV

(1) (2) (3) (4) (5)

Ag SW Allocation (AF/acre) -0.016 -0.028
(0.007) (0.016)

Ag SW Deliveries (AF/acre) -0.030 -0.056 -0.062
(0.010) (0.019) (0.016)

Harmful Degree Days 0.002 0.002 0.004
(0.001) (0.001) (0.002)

Observations 468,339 468,081 468,325 468,067 106,726
N Groups 78,082 78,039 78,068 78,025 17,794
Weights Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓ ✓
Other Weather ✓ ✓ ✓

Note: Dependent variable is a {0,1} outcome if a domestic groundwater reported a failure that year. The panel spans
from 2015-2020 and is composed of all domestic groundwater wells with unique coordinates in California. Column 5
reports results from the subset of counties within the California Partnership for the San Joaquin Valley. All regressions
are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at
the DAUCO level and are reported in parentheses.

well failures, which compromise access to drinking water. Our preferred specification in column
(4) indicates that an additional HDD increases the share of domestic wells that fail by 0.2 percent-
age points, and a one AF/acre reduction in surface water increases well failures by 5 percentage
points. Translated to our 2021 example, well failure probability increased by 3.4 percentage points
as a result of surface water curtailments and by 4.8 percentage points due to extreme heat. These
estimates are large when compared to the sample mean probability of well failure of 3% displayed
in Table 1.

We may overstate the impacts of weather shocks on access to drinking water if assistance
for domestic failures increases or domestic well failures become more salient during droughts.
This is a concern in our setting since support for domestic failures differs within the state, with 10
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designated counties receiving differential treatment.19 To test for this possibility, we restrict our
sample to the 10 counties in the California Partnership for the San Joaquin Valley, and evaluate the
effect of surface water and heat shocks on domestic well failures. Results in column 5 highlight that
even within a sample of counties that receive similar state assistance, our results are unchanged.

We find that weather-driven well failures are concentrated almost exclusively in low-income
populations and among communities of color. To investigate the distributional effects of well fail-
ures, we decompose the treatment effects reported in column (4) of Table 3 by estimating separate
regressions that interact the outcome variable with subgroup indicators.20 In Figure 5, panels (a)
and (c) plot the effects for surface water curtailments and harmful degree days decomposed by
income quartile, while panels (b) and (d) plot the effects decomposed by quartile of the non-white
population share. Both treatment effects occur almost exclusively in relatively low-income and
non-white communities. Relatively whiter communities exhibit almost no change in domestic well
failures, and higher-income populations demonstrate only a small increase.

One Mechanism: Agricultural Well Construction

Our results so far establish that heat and surface water scarcity cause damages in the form of
groundwater depletion and domestic well failures. Our goal now is to demonstrate that these dam-
ages are at least in part due to adaptation by agricultural producers. To do so, we estimate the
effects of heat and surface water scarcity on the construction of new agricultural wells. Table 4 re-
ports results from the count of new agricultural wells, where allocations are used as an instrument
for surface water deliveries. Columns (1) and (2) present treatment effects from a linear specifi-
cation, without and with extreme heat and local weather controls. Columns (3) and (4) display
results from Pseudo-Poisson Maximum Likelihood estimation using a control function approach,
again without and with weather variables.

Our third main result is that heat and surface water scarcity induce farmers to construct
more agricultural wells. Farmers drill approximately 46.2% more agricultural wells for a 1-AF/acre
reduction in surface water and 1.3% more for every 1-HDD increase.21 Assuming a uniform cost
of $75,000 per well (California State Board of Equalization, 2023), our estimates imply that in

19Information on dry well reporting, assistance and how it differs across regions can be found at:https://
mydrywell.water.ca.gov/report/shortage_resources

20These are not heterogeneous effects but rather a decomposition of incidence; for subgroups that are mutually
exclusive and exhaustively defined, the coefficients across subgroups sum to the main coefficient in Table 3

21Recall that estimates must be transformed by eβ −1 to be interpreted as a percent change for Poisson models.
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Figure 5: Decomposing Average Treatment Effects (ATE) by Local Demographics

(a) Ag SW Deliveries (AF/acre) (b) Ag SW Deliveries (AF/acre)

(c) Harmful Degree Days (d) Harmful Degree Days

Note: Figure shows the share of the treatment effect on surface water and heat by demographic
quartile (i.e. treatment effects for the four groups sum to pooled treatment effect in Table 3).
Dependent variable is a binary outcome if a domestic groundwater reported a failure that year
multiplied by demographic quartile identifiers. For panels (a) and (c), the treatment effect on well
failures is decomposed by the Census tract quartile for the percent of the population that is low-
income. In panels (b) and (d), the treatment effect is decomposed by quartiles of the percent of the
population that is non-white. All regressions are weighted by the DAUCO crop acres, include year
and DAUCO fixed effects, and control for local weather.
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Table 4: Construction of New Agricultural Wells: IV and Control Function

IV CF/PPML

(1) (2) (3) (4)
Ag SW Deliveries (AF/acre) -13.06 -12.38 -0.690 -0.620

(4.584) (4.750) (0.262) (0.262)

Harmful Degree Days 0.111 0.0128
(0.0329) (0.00261)

µ̂ 0.732 0.767
(0.346) (0.347)

Observations 9,660 9,240 8,568 8,400
N Groups 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All re-
gressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard
errors are clustered at the DAUCO level and are reported in parentheses. Columns (3) and (4) standard
errors are calculated using 500 bootstrap simulations, clustered at the DAUCO level.

response to the 2021 drought, farmers spent $24 million to construct 321 additional wells due to
surface water curtailments and $22 million to construct 294 additional wells due to extreme heat.
In addition to drilling more wells, it could be the case that farmers are responding by drilling
deeper wells. Appendix Table A2 evaluates the effect of surface water and temperature shocks on
the drilled depth of newly constructed wells. Wells appear to be drilled deeper in response to heat
and water scarcity, though these estimates are imprecise.

One potential threat to interpreting these results as a mechanism of groundwater depletion
is that the new wells constructed in response to weather shocks might not truly add to pre-existing
irrigation capacity. Perhaps farmers construct new wells while at the same time retiring old wells,
or perhaps they simply shift the construction of already-planned wells forward in time. Under
either scenario, our main estimates would overstate the the extensive margin response. To investi-
gate the possibility of well replacement, we estimate the effect of weather shocks on the count of
agricultural well destruction. Results presented in Appendix Table A3 provide little evidence of
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well replacement. For surface water scarcity, the effects on well destruction are all much smaller
than the effects on well construction. For extreme heat, if anything, the estimates suggest that well
owners delay well destruction in response to heat exposure.

To investigate the possibility of intertemporal substitution, we augment our main specifica-
tion to include three annual lags of surface water deliveries and harmful degree days. In Appendix
Tables A6 and A7, we find no evidence that the lagged terms have opposite signs as the contem-
poraneous effects. Instead, if anything, the cumulative sums of the distributed lag coefficients are
greater than the contemporaneous effects alone. In addition, the contemporaneous estimates are
robust to the inclusion of lagged weather shocks. Taken together, our results imply that farmers
respond to surface water scarcity and heat by expanding groundwater irrigation and on net con-
structing wells that otherwise would have not been drilled.

Decomposing the Mechanisms

Our main empirical estimates show that surface water scarcity and extreme heat cause both ground-
water depletion and increased agricultural well construction. A natural next question is how much
of the damages (in depletion, and by extension, domestic well failures) are explained by the mech-
anism of well construction. To answer this question, we apply the simple physical model from
Equation (3) to decompose the effect on groundwater depth into three margins: (1) the extensive
margin of well construction, (2) the intensive margin of increased pumping per well, which is un-
observed, and (3) changes in recharge rates. We begin with a static version of the exercise and then
move to a more realistic dynamic version.

Table A9 lists the parameter values we use for this exercise. They include (a) our point
estimates on the change in groundwater depth and new well construction, (b) one parameter that
we obtain directly from our raw data, the count of existing wells w, and (c) three parameters that
we calibrate from the literature specific to California: average groundwater extraction per well
(q), aquifer storativity (κ−1), and the recharge rate (∂R

∂ s ). Where multiple published values are
plausible, we choose conservative values that will reduce the size of the extensive margin relative
to the other mechanisms.

To proceed, we substitute parameter values into Equation (3) and recover the unobserved
intensive-margin response through algebra. We first convert our estimated effect on groundwater
depth to the corresponding effect on the volume of groundwater stocks, by dividing it by κ . We
obtain a 0.35 AF/acre decline in groundwater stocks per AF/acre reduction in surface water deliv-
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eries, net of recharge. Of this depletion, we attribute a maximum of 51% to a reduction in recharge
(0.18 AF/acre, or a 1.5 ft decline), leaving a 0.17 AF/acre increase in gross groundwater extrac-
tion to be divided between the intensive and extensive margins. The extensive margin response
is conservatively estimated to be 0.01 AF/acre, implying that 2% of the effect on groundwater
stocks, or 5% of the effect on groundwater extraction, is attributable to new well construction. In
this framework, the rest (0.16 AF/acre) must be due to the intensive margin: 46% of the effect on
groundwater stocks, or 95% of the effect on groundwater extraction, is due to increased pumping
from existing wells.

A problem with this static decomposition exercise is that it allows new wells constructed
in a given year to only affect groundwater extraction in that year. Put differently, it attributes all
groundwater consumption to either increased pumping from existing wells (the intensive margin)
or new wells constructed in that year (the extensive margin)—but some of these existing wells may
have been constructed recently, in response to earlier shocks. A full accounting of the extensive
margin ought to include the effects of new wells on groundwater pumping in all periods, not just
in the year of construction.

Decomposition with Dynamic Effects

We now extend our framework to allow new well construction to have persistent effects on ground-
water extraction. Incorporating dynamics yields two changes to the conceptual framework. First,
the target of decomposition changes from the contemporaneous effect of weather shocks on ground-
water depth to the cumulative effect. Second, a new mechanism accounts for future groundwater
extraction from new wells constructed in response to weather shocks today. The model is fully
derived in Appendix Section A.1, and the result is Equation (11). The marginal effect of weather
shocks on groundwater depth can now be decomposed into four mechanisms: (1) pumping more
from each well (the contemporaneous intensive margin), (2) constructing new wells that pump
more today (the contemporaneous extensive margin), (3) the future increase in pumping from new
wells constructed today (the future extensive margin), and (4) recharge.

dDTWT

dst︸ ︷︷ ︸
cumulative effect

= κ

[
wt(st)×

dqt(st)

dst︸ ︷︷ ︸
contemporaneous
intensive margin

+qt(st)×
∂wt(st)

∂ st︸ ︷︷ ︸
contemporaneous
extensive margin

+
T

∑
τ=t+1

qτ(sτ)×
∂wt(st)

∂ st︸ ︷︷ ︸
future extensive margin

− ∂Rt

∂ st︸︷︷︸
recharge

]
.

(11)
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This equation is different from the static decomposition from equation (3) in two ways: The left-
hand side is the cumulative effect on DTWT rather than the contemporaneous effect DTWt (captur-
ing the cumulative change at some future point in time T from a surface water shock in the initial
year t), and the “future extensive” margin term is new.

To calculate the decomposition empirically, we first estimate the cumulative effect using a
distributed lag model. Then, of the four mechanisms in Equation (11), we already know three from
the static decomposition above; only the future extensive margin is new. This term is challenging
to estimate directly.22 Instead, we back out the value of the future extensive margin from other
terms we have already estimated. The intuition is that the future extensive margin is the only one
of the four mechanisms that affects periods beyond the current one, so all lagged effects of weather
shocks on groundwater depth can be attributed to it:

dDTWT

dst
− dDTWt

dst
= κ

[ T

∑
τ=t+1

qτ(sτ)×
∂wt(st)

∂ st

]
=

T

∑
τ=t+1

dDTWτ

dst
. (12)

To estimate the cumulative effect dDTWT
dst

, we need to choose a time horizon T for the dis-
tributed lag model. In principle, new wells built in response to surface water scarcity can affect
groundwater depletion for many years after they are built. At the same time, we would expect their
effects to decline over time, as water tables fall and older wells exit production. And in practice,
every lag term we add to the regression costs us one year of data and identifying variation, reducing
precision. As a compromise, we choose T by estimating a series of regressions that add lag terms
in a stepwise fashion until the sum of their coefficients appears to plateau (i.e., until the last lag has
a point estimate around zero).

Figure 6 plots the cumulative effect (i.e., the sum of contemporaneous and lagged coeffi-
cients) of a 1-AF/ac surface water shock on the depth to the water table in each of the seven years
following the surface water curtailment. Just as in Table 2, the contemporaneous (year-1) effect
of a 1-AF/acre reduction in surface water availability is a 2.9-foot increase in groundwater depth.

22This term requires knowledge of the entire time path of the average quantity pumped per new well qτ every year
into the indefinite future. It is therefore highly sensitive to assumptions about the lifespan of an agricultural well, as
reflected in either the choice of time horizon T , or how quickly the pumping quantities fade to zero over time. In
principle, we could read off qτ from a statewide-representative well-level dataset of extraction and well age, but such
data are not available. We could assume that wells have a finite average lifespan T and that they continue pumping
the same value qτ = qt in each year until then, but the useful life of a well can vary widely. We also lack ideal data
on wells that reduce or stop production, so the average amount pumped per well in future years becomes increasingly
unreliable with greater τ .
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Figure 6: Cumulative Impulse Response of Surface Water Shocks on ∆DTW

Note: Figure displays the cumulative impulse response of a single surface water shock (AF/acre)
in the initial year. Dependent variable is ∆DTW and the dark line reflects the sum of contempo-
raneous and lagged coefficients on surface water deliveries for each year since the initial shock.
Light shading reflects confidence intervals clustered at the DAUCO level.

After that, effects of surface water shocks persist over time. The cumulative change in groundwater
levels continues to grow over time, more than doubling to 6.7 feet six years after the initial shock.
However, the impulse response flattens over time, and by year 7 there is no longer clear evidence
that the cumulative change is continuing to grow. The pattern in this graph indicates that surface
water scarcity (a) causes the greatest decline in groundwater stocks in the year in which it occurs,
(b) continues contributing to groundwater depletion for several more years, which we attribute to
the persistent effects of durable well construction, and (c) recedes to the baseline trajectory in less
than a decade.

Based on this evidence, we choose a lag structure of T = 6 to estimate the cumulative
effect of surface water shocks on groundwater levels. If surface water scarcity affects groundwater
depletion for more than six years following the initial shock, we will understate the cumulative
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effect, but we find that regressions with more than seven lags are too noisy to be useful. We find
that between the second and six years following a surface water shock, groundwater levels decline
by an additional 3.9 feet. These lagged effects represent the difference between the cumulative
and contemporaneous effects, so following Equation (12), we interpret this effect as the future
extensive margin.

Including the dynamic effects of well construction, we estimate that the extensive margin
(both contemporaneous and future) accounts for 75% of the effect of surface water scarcity on
groundwater extraction. The cumulative effect of a one-year reduction in surface water of 1 AF/ac
is a 0.81 AF/ac decline in groundwater stocks. Of this depletion, 22% is attributable to contem-
poraneous lost recharge, leaving a 0.63 AF/ac increase in groundwater extraction to be explained.
The previously calculated contemporaneous intensive margin—increased pumping from existing
wells—represents 20% of the decline in the water table, and 26% of the increase in extraction,
resulting from surface water shocks. The remainder is attributable to the extensive margin: new
well construction accounts for 58% of the decline in the water table and 75% of the increase in
extraction resulting from surface water shocks.

These results show that new well construction plays a large role in how environmental
shocks affect groundwater resources. The contrast between the static and dynamic versions of the
decomposition shows that the durable nature of well construction gives rise to persistent effects that
are important to take into account. The decomposition also demonstrates that out of the damages to
groundwater levels and well failures we estimate as occurring in response to environmental shocks,
a large fraction is indeed due to agricultural adaptation, through a mechanism that we can observe
and estimate empirically.

7 Conclusion

Groundwater serves as a critical natural resource that must meet the needs of the environment, the
agricultural industry, and millions of residential households in California. Using well-level data
spanning almost three decades, this paper shows that climate change has accelerated groundwater
depletion and exacerbated existing externalities. We demonstrate that this is driven in part by ad-
ditional extraction by farmers as they rely more heavily on groundwater to mitigate surface water
scarcity and extreme heat. This adaptation behavior limits the private costs of weather fluctua-
tions to agricultural users in the near term, but imposes external costs on domestic well owners.
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Importantly, these external costs are heavily born by people of color and low-income households.
The findings from this study are directly relevant to the management of groundwater, which

is largely unregulated across the world. Myriad collective action governance, restrictions, and
markets have been recently proposed or enacted as solutions to manage groundwater with some
success (Ayres, Meng, and Plantinga, 2021; Burlig, Preonas, and Woerman, 2021; Earnhart and
Hendricks, 2023; Bruno and Hagerty, 2023; Bruno, Jessoe, and Hanemann, 2024). Restrictions
or moratoria on new well drilling, especially in drought years, are another potential regulatory
instrument to curb groundwater depletion. Our work suggests that farmers respond to drought by
drilling new wells and increasing pumping at existing wells, meaning groundwater externalities
may persist through adjustments along both intensive and extensive margins. Effective policies
will address both dimensions.

Our findings shed light on the extent to which adaptation will buffer the agricultural costs
of climate change. A large body of work shows that agricultural outcomes are responsive to fluc-
tuations in weather (Deschênes and Greenstone, 2007; Hagerty, 2021). However, evidence on the
extent to which adaptation can mitigate these costs is mixed (Burke and Emerick, 2016; Auffham-
mer, 2018; Hultgren et al., 2022). Long-run costs may be reduced if agricultural producers adopt
new technologies, change the location and types of crops grown, or adjust the quantity and com-
position of inputs (Sloat et al., 2020; Rosa et al., 2020; Aglasan et al., 2023). But the open-access
management of a common-pool resource may result in the opposite being true. We show that in the
short-run, heat and surface water shocks will deplete the available groundwater stock, suggesting
that in the long-run the costs of climate change may be amplified if farmers cannot rely on ground-
water to buffer against these shocks (Hornbeck and Keskin, 2014; Perez-Quesada, Hendricks, and
Steward, 2023).

Furthermore, this paper demonstrates that adaptive behaviors to shield against the damages
of climate change may impose costs on other parties. While adaptation costs are conventionally
included in costs of climate change accounting, the externalities from adaptation are omitted from
these figures. Additionally, as climate adaptation occurs in other sectors (e.g., energy, healthcare,
manufacturing), it is imperative for policymakers to ensure that the actions taken to limit direct
climate damages are not unintentionally imposing costs on others.
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For Online Publication: Appendix

A.1 Dynamic Effects of Well Drilling

As discussed in the paper, the decision to drill a well and the subsequent impacts from that action
are inherently dynamic. In this section, we expand our base conceptual model to incorporate a
time element and test empirically the size and pattern of these effects over time.

Dynamic Conceptual Model

Consumption in year t is given by the number of active wells pumping at time t and the average
amount pumped from each well. For this expansion, we only focus on the effects for surface water
shocks, but symmetrical analysis could be shown for heat shocks:

Ct(st) = wt(st)×qt(st). (A1)

The number of wells in each period depends on the number of wells in the prior period.
Surface water affects only the number of new wells in year t:

wt(st) = wt−1 +∆wt(st)

= wt−2 +∆wt−1(st−1)+∆wt(st) (A2)

= w0 +
t

∑
τ=1

∆wτ(sτ)

Future groundwater stock is a function of that year’s consumption and each preceding year’s con-
sumption:

DTWt(st) = DTW0 +κCt(st)−κRt(st)

DTWt+1(st ,st+1) = DTW0 +κ
(
Ct(st)+Ct+1(st+1)

)
−κ

(
Rt(st)+Rt+1(st+1

)
(A3)

DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

Cτ(sτ)−κ

T

∑
τ=t

Rτ(sτ)

But consumption from one period to the next is linked by the fact that wells are persistent
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once built.

DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

Cτ(sτ)−κ

T

∑
τ=t

Rτ(sτ)

= DTW0 +κ

T

∑
τ=t

qτ(sτ)wτ(sτ)−κ

T

∑
τ=t

Rτ(sτ) (A4)

= DTW0 +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
u=t

∆wu(su)
)
−κ

T

∑
τ=t

Rτ(sτ)

Expanding the sums for convenience, to keep current year shocks separate from later year
shocks:

DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
u=t

∆wu(su)
)
−κ

T

∑
τ=t

Rτ(sτ)

(A5)

= DTW0 +κqt(st)wt(st)+κ

T

∑
τ=t+1

qτ(sτ)
(

wt(st)+
τ

∑
u=t+1

∆wu(su)
)
−κ

T

∑
τ=t

Rτ(sτ)

Then, assume a shock to surface water occurs in time t. The effect on future groundwater
levels can be decomposed as:

dDTWT

dst
· 1

κ
= wt(st)

dqt(st)

dst
+
(

qt(st)+
T

∑
τ=t+1

qτ(sτ)
)

∂wt(st)

∂ st
+κ

∂Rt(st)

∂ st
, (A6)

where wt(st)
dqt
dst

(st) represents the current year intensive margin shock, qt
∂wt
∂t
(st) is current year

extensive margin impact, and ∂wt
∂t

∑
T
τ=t+1 qτ(sτ) is the cumulative extensive margin impact.
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A.2 Supplementary Figures and Tables

Figure A1: Population Demographics in California

% Hispanic Population

(a)

% Population below poverty line

(b)

Note: Figure displays demographics at the Census tract level using data from 2020 (Manson et al.,
2022). Panel (a) plots the percentage of the population that identifies as Hispanic. Panel (b) plots
the percentage of households that fall below the federal poverty line for their household size. Bold
county boundaries specify counties in the San Joaquin Valley.
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Figure A2: Location of Domestic Wells

Note: Figure shows the location of domestic groundwater wells constructed. Data are
from Well Completion Reports from DWR.

43



Figure A3: Location of Monitoring Wells in California Groundwater Basins

Note: Figure displays the locations of groundwater monitoring wells and California’s
principle groundwater basins. Each dot displays a unique groundwater monitoring well
reported in our dataset. The blue shaded areas display the locations of Bulletin 118
groundwater basins in California.
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Figure A4: Locations of Reported Well Failures, 2014-2020

Note: Figure plots the locations of all reported well failures from 2014-2020 from the
Dry Wells Reporting System from California DWR. Counties in the San Joaquin Valley
have a thick border, and a large share of reported well failures occur in these counties.
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Figure A5: Histogram of Annual Agricultural Well Construction per DAUCO, 1993-2020

Note: Histogram plots the density of the count of agricultural wells constructed per year
per DAUCO in our dataset. The bars show the skewed nature of the count data, with
many zero observations, and small share of DAUCO-years with reported constructions
exceeding 50 new wells.
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Table A1: Agricultural SW Deliveries: First-Stage Results

(1) (2)

Ag SW Allocation (AF/ acre) 0.588 0.531
(0.0460) (0.0540)

Harmful Degree Days -0.000353
(0.00172)

Growing Degree Days 0.000184
(0.0000432)

Annual Precipitation -0.000461
(0.000202)

Observations 9,660 9,240
N Cluster 345 330
F Stat 163.6 79.07
Weights Crop Acres Crop Acres
Cluster DAUCO DAUCO
Time FE ✓ ✓

Unit FE ✓ ✓

Note: Table presents the first-stage effect of surface water allocations
on surface water supplies. The dependent variable is agricultural sur-
face water deliveries per crop acre in levels from 1993-2021. All re-
gressions are weighted by the DAUCO crop acres and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO
level and are reported in parentheses.
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Table A3: Destruction of Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation per crop acre (AF) 0.115 0.164 -0.0903 -0.00591
(0.193) (0.228) (0.140) (0.143)

Harmful Degree Days -0.00215 -0.0228
(0.00778) (0.00814)

Observations 10,416 9,996 4,158 4,158
N Cluster 372 357 154 154
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of destroyed agricultural wells per DAUCO from 1993-2020. Columns (1)
and (2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO
fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A4: Construction of New Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -7.180 -6.581 -0.333 -0.278
(2.665) (2.596) (0.131) (0.124)

Harmful Degree Days 0.115 0.00897
(0.0390) (0.00202)

Observations 9,660 9,240 8,568 8,400
N Cluster 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Dynamic Empirical Estimation Results

Table A5 reports the dynamic effects up for up to 3 lag shocks on surface water deliveries and
harmful degree days. This table reflects the same model and pattern illustrated in Figure 6. The
summed cumulative effect of surface water deliveries on changes in depth to the water table is
largest in the initial year, but persists and gradually increases with higher ordered lags.

Tables A6 and A7 consider the dynamics of agricultural well drilling. In Table A6, we
report the results a linear IV for well construction, similar to columns (1) and (2) of Table 4 but
now supplemented with up to three lagged years of agricultural surface water deliveries. Columns
(2) through (4) each add an additional lag. In these specifications, deliveries are instrumented with
surface water allocations. Table A7 similarly considers the dynamic effects on new agricultural
well construction but instead focuses on the reduced-form effect of surface water allocations with
the Poisson transformation. This is because the control function approach outlined in equation
(10) is incompatible with lagged variables that enter nonlinearly. A look at the coefficients on
lagged surface water supplies across all specifications reveals no consistent pattern. The sum of
the coefficients, which captures the effect of a single supply shock over time, are not statistically
different from each other across specifications. This suggests that the contemporaneous effect
is characterizing the most meaningful impact of year-to-year changes in water supplies on new
agricultural well construction.

These results can be explained by the presence of two opposing forces. On the one hand,
heat and surface water shocks may alter farmers’ expectations about future climate conditions and
water availability, causing them to drill more wells today and over the lifetime of their operations.
Realizations of drought increase the incentive to drill by increasing the cost of delaying.

On the other hand, it may be the case that farmers are simply shifting forward in time the
decision to drill a new well. A behavioral response that only consists of inter-temporal substitution
would suggest that coefficients on lagged variables should take the opposite sign of the contem-
poraneous effect, because drilling a well today reduces the need to drill in the future. This in turn
would cause the sum of the coefficients to attenuate as we add more lagged variables. Since we
see no observable trend from the inclusion of the lagged variables, it suggests that neither of these
forces are dominating. These two effects are working in opposite directions and cannot be teased
out. Taken together, this pattern of results on lagged variables support our main results reported in
Table A4. The vast majority of the effects of drought on well construction are concentrated in the
first year. We proceed by focusing on the more parsimonious specification of equation (10) and
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retaining power with more observations.
The effects of surface water reductions and heat could conceivably impact groundwater

outcomes in future years as well. If more agricultural wells are drilled in the contemporaneous
year, this extensive margin change may also result in additional groundwater extraction – and thus,
a lower groundwater table – in future years as well. If dynamics are present, it may imply that the
contemporaneous effect alone is a lower bound of the cumulative effect of surface water and heat
shocks. Table A5 reports estimates of changes in groundwater depth (∆DTW ) regressed on lagged
weather shocks.

Similarly, we explore the impacts of prior weather shocks on reported well failures in Table
A8. Columns (2) and (3) indicate that the effects of a one AF/acre surface water reduction may re-
sult in as much as a 32% increase in the probability of well. However, this is the opposite direction
of the lagged effects of harmful degree days. We are hesitant to draw definitive conclusions from
this table, however, since the panel only consists of five total years of well failure data.
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Table A5: Lagged Changes in Groundwater Depth

(1) (2) (3) (4)
∆DTW

Ag SW Deliveries (AF/Acre) -2.914 -2.716 -3.121 -3.188
(1.174) (1.080) (1.102) (1.242)

L.Ag SW Deliveries (AF/Acre) 0.220 -0.258 -0.135
(0.634) (0.672) (0.803)

L2.Ag SW Deliveries (AF/Acre) -0.701 -1.216
(0.765) (0.792)

L3.Ag SW Deliveries (AF/Acre) -0.520
(0.381)

∑βdeliveries -2.914 -2.496 -4.080 -5.058
pdeliveries 0.0130 0.00414 0.0000763 0.0000808

Harmful Degree Days 0.0309 0.0187 0.0181 0.0145
(0.0115) (0.0140) (0.0127) (0.0123)

L.Harmful Degree Days 0.0223 0.0252 0.0299
(0.0105) (0.0104) (0.0126)

L2.Harmful Degree Days -0.0114 -0.0159
(0.00741) (0.00994)

L3.Harmful Degree Days 0.00535
(0.0101)

∑βhdd 0.0309 0.0410 0.0319 0.0338
phdd 0.00740 0.00693 0.0393 0.0298

Observations 560,931 421,251 321,384 246,159
N Cluster 282 277 269 260
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells

Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Dependant variable is the change in the depth to the groundwater from the surface (ft)
from 1994-2020 at the monitoring well level. All regressions are weighted by the DAUCO
crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
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Table A6: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Deliveries (AF/ crop acre) -12.38 -11.51 -11.53 -11.45
(4.750) (4.450) (4.582) (4.537)

L.Ag SW Deliveries (AF/ crop acre) -3.512 -2.999 -3.602
(2.858) (2.779) (3.207)

L2.Ag SW Deliveries (AF/ crop acre) 1.377 3.089
(2.355) (2.505)

L3.Ag SW Deliveries (AF/ crop acre) -4.109
(2.853)

∑βdelieveries -12.38 -15.02 -13.15 -16.07
pdeliveries 0.00913 0.00877 0.0277 0.0355

Harmful Degree Days 0.111 0.0981 0.0971 0.0897
(0.0329) (0.0349) (0.0318) (0.0327)

L.Harmful Degree Days 0.0809 0.0848 0.0548
(0.0397) (0.0426) (0.0390)

L2.Harmful Degree Days 0.0551 0.0643
(0.0247) (0.0239)

L3.Harmful Degree Days 0.0174
(0.0237)

∑βhdd 0.111 0.179 0.237 0.226
phdd 0.000760 0.00484 0.00171 0.00302

Observations 9,240 8,910 8,580 8,250
N Cluster 330 330 330 330
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Other Weather ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Table reports regression results from a lagged linear IV model. The dependent variable is the count of new
agricultural wells per DAUCO from 1993-2020. All regressions are weighted by the DAUCO crop acres and include
year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A7: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Allocation (AF/crop acre) -0.278 -0.284 -0.306 -0.281
(0.124) (0.130) (0.126) (0.137)

L.Ag SW Allocation (AF/crop acre) 0.0184 -0.0150 -0.0370
(0.0500) (0.0436) (0.0495)

L2.Ag SW Allocation (AF/crop acre) 0.157 0.184
(0.0835) (0.0814)

L3.Ag SW Allocation (AF/crop acre) -0.0202
(0.0715)

∑βdeliveries -0.278 -0.266 -0.164 -0.154
pdeliveries 0.0249 0.0481 0.235 0.338

Harmful Degree Days 0.00897 0.00958 0.00915 0.00972
(0.00202) (0.00261) (0.00287) (0.00323)

L.Harmful Degree Days 0.00331 0.00435 0.00190
(0.00266) (0.00250) (0.00251)

L2.Harmful Degree Days 0.00447 0.00383
(0.00254) (0.00266)

L3.Harmful Degree Days 0.00521
(0.00240)

∑βhdd 0.00897 0.0129 0.0180 0.0207
phdd 0.00000911 0.000326 0.000125 0.000110

Observations 8,400 8,073 7,722 7,400
N Cluster 300 299 297 296
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
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Table A8: Lagged Probability of Well Failure

(1) (2) (3) (4)
Well Failure Reported

Ag SW Deliveries (AF/ crop acre) -0.0548 -0.0397 -0.178 0.000778
(0.0191) (0.0131) (0.0597) (0.0277)

L.Ag SW Deliveries (AF/ crop acre) -0.0677 -0.177 -0.0296
(0.0265) (0.0691) (0.0278)

L2.Ag SW Deliveries (AF/ crop acre) 0.0257 -0.0216
(0.0168) (0.0122)

L3.Ag SW Deliveries (AF/ crop acre) 0.00908
(0.00649)

∑βdeliveries -0.0548 -0.107 -0.329 -0.0414
pdeliveries 0.00415 0.000413 0.00529 0.453

Harmful Degree Days 0.00205 0.00157 0.00142 0.0000432
(0.000899) (0.000759) (0.000634) (0.0000781)

L.Harmful Degree Days -0.00333 -0.00187 0.000179
(0.00166) (0.00116) (0.000168)

L2.Harmful Degree Days -0.000906 -0.000166
(0.000612) (0.000161)

L3.Harmful Degree Days 0.0000875
(0.000150)

∑βhdd 0.00205 -0.00176 -0.00135 0.000144
phdd 0.0228 0.106 0.364 0.745

Observations 476,748 476,748 397,290 317,832
N Cluster 342 342 342 342
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A9: Parameter Values for Decomposition

Parameter Value Units Description
dDTW

ds (s,h) -2.91 ft per AF/ac Same-year gross change in DTW per AF/acre
change in surface water. Results from Table 3
Column 4.

dDTWT
dst

(st) -6.77 ft per AF/ac Cumulative future change in DTW per AF/acre
change in surface water. Results from figure 6

κ 8.33 unitless Inverse storativity or specific yield Department
of Water Resources (2020)

∂R
∂ s 0.18 ft per AF/ac Calculated from California DWR Water Bal-

ance Data, which reports regional values of
recharge as a proportion of total applied water.
We choose the maximum of a calculated range
of 0.07 to 0.18 ft per AF/ac.

∂w
∂ s -4.60 ×10−5 wells/ac/yr per

AF/ac
Change in the number of new agricultural wells
drilled per year per crop acre due to a one
AF/acre change in surface water. Results from
Table 6 Column 4 multiplied by the total an-
nual average of new agricultural wells divided
by California crop acreage.

q 178 AF/well/yr Average AF/year of groundwater pumped per
well. Calculated from Department of Water Re-
sources (2020) that estimates agriculture in Cal-
ifornia uses 15.2 million AF of groundwater per
year divided by the total number of wells in our
data.

w 8.60 ×10−3 wells/ac Number of agricultural wells in use in Cali-
fornia Well Completion Reports divided by the
number of crop acres in California in our data.

Note: Table reports estimated and calculated values for parameters in the decomposition of inten-
sive and extensive margin effects presented in equations (3) and (11). California Water Balance Data
used to calculate recharge coefficient can be accessed at https://data.cnra.ca.gov/dataset/
water-plan-water-balance-data
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Additional Empirical Specifications

We conduct two falsification tests of our primary model. First, Table A10 reports results from a
regression of new domestic well construction on agricultural surface water deliveries and harmful
degree days. Since agricultural surface water allocations are solely related to the agricultural sector,
we expect shocks to this variable to be unrelated to domestic well construction. Indeed, none of the
coefficients report a significant effect on new domestic well construction. Furthermore, additional
HDDs do induce more domestic wells to be drilled, but the response is smaller in magnitude than
for agricultural well construction. This supports that agricultural well drilling is due to reduced
surface water for agriculture, and not some correlated factor with all types of well drilling more
broadly. Further, this also shows that domestic households are unable to respond to heat to the
same degree as agricultural groundwater users, and thus, more vulnerable to groundwater scarcity
in the future.

We explore whether shocks in surface water supplies to other sectors, municipal and indus-
trial, impact agricultural well drilling in Table A11. These results indicate that municipal and in-
dustrial water supplies are actually positively correlated with agricultural well construction, which
is opposite of the effect of agricultural surface water. None of these coefficients are significant,
and again, supports that the results in Tables A4 and 4 are due to agricultural surface water and not
another factor that is correlated with all sectors’ water supplies.
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Table A10: Construction of New Domestic Wells

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -1.534 -1.021 -0.0657 -0.0128
(1.582) (1.535) (0.0783) (0.0641)

Harmful Degree Days 0.0774 0.00950
(0.0477) (0.00445)

Observations 9,660 9,240 9,072 8,876
N Cluster 345 330 324 317
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new domestic wells per DAUCO from 1993-2020. Columns (1) and
(2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A11: Construction of New Agricultural Wells: Municipal and Industrial Surface Water

OLS PPML

(1) (2) (3) (4)

M&I SW Allocation per Acre 19.71 23.36 1.407 1.459
(28.88) (28.91) (1.300) (1.257)

Harmful Degree Days 0.115 0.0143
(0.0422) (0.00287)

Observations 8,874 8,400 7,540 7,224
N Cluster 306 300 260 258
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. In-
dependent variable is surface water allocated (AF per crop acre) for municipal and industrial use, as
opposed to agricultural use. Columns (1) and (2) report the coefficients for the OLS model. Columns
(3) and (4) report coefficients from a psuedo-poisson maximum likelihood model. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are
clustered at the DAUCO level and are reported in parentheses.
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